0 water
]

Article

Establishing Total Phosphorus Boundaries to Support Good
Ecological Status of Greek Lakes and Reservoirs in Accordance
with the Water Framework Directive

Marianthi Zioga "*, Dimitra Kemitzoglou !, [oanna Zerva

and Vasiliki Tsiaoussi 1

check for
updates

Academic Editor: Xiaoxiao Wang

Received: 24 October 2025
Revised: 19 November 2025
Accepted: 21 November 2025
Published: 23 November 2025

Citation: Zioga, M.; Kemitzoglou, D.;
Zerva, I; Katsavouni, S.; Kagalou, I;
Tsiaoussi, V. Establishing Total
Phosphorus Boundaries to Support
Good Ecological Status of Greek Lakes
and Reservoirs in Accordance with the
Water Framework Directive. Water
2025,17,3349. https://doi.org/
10.3390/w17233349

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

1, Sotiria Katsavouni 1, Ifigenia Kagalou ?

! National Museum of Natural History Goulandris, Greek Biotope-Wetland Centre (EKBY),
57001 Thermi, Greece; dimitra@ekby.gr (D.K.); izerva@ekby.gr (I.Z.); sotiria@ekby.gr (S.K.);
vasso@ekby.gr (V.T.)

Department of Civil Engineering, School of Engineering, Democritus University of Thrace,
67100 Xanthi, Greece; ikagkalo@civil.duth.gr

*  Correspondence: marianthi@ekby.gr

Abstract

Eutrophication, driven by nutrient enrichment, represents substantial anthropogenic pres-
sure with harmful consequences for aquatic ecosystems. The Water Framework Directive
provides a structured approach to addressing this challenge as it requires European Union
Member States to achieve at least good ecological status for their surface waters. The
establishment of realistic nutrient boundaries, above which negative effects become pro-
nounced, is essential to guide regulatory intervention aimed at securing long-term water
sustainability in Europe. Greece is one of the Member States which should determine
nutrient boundaries supporting the good ecological status of lakes. Two statistical ap-
proaches, ranged major axis regression and binomial logistic regression, were applied
for setting appropriate nutrient boundaries for Greek natural lakes and reservoirs, using
datasets of phytoplankton and total phosphorus concentrations, retrieved from the national
monitoring program (2016-2023). The predicted boundary values for total phosphorus
supporting good ecological status ranged from 32 to 76 pg/L, with stricter boundaries
corresponding to deep lakes. Nutrient boundaries that reflect the environmental pressures
on Greek natural lakes and reservoirs are fundamental to ensure proper design of lake
management strategies.

Keywords: nutrient boundaries; water framework directive; good ecological status; Greek
lakes; total phosphorus

1. Introduction

Human-induced pressures, such as agricultural practices and intensive use of fer-
tilizers, wastewater discharge, fossil fuel combustion, and climate change, are adversely
impacting aquatic environments worldwide, jeopardizing their ecological integrity and
services. These pressures have profound consequences in lake ecosystems, often leading to
phenomena such as eutrophication, acidification, and salinization. Human welfare can be
negatively influenced as well, through numerous impacts on ecosystem services [1-4].

Eutrophication, caused by the excessive input of nutrients, such as phosphorus and
nitrogen, into freshwater and especially into lake ecosystems, needs to be regulated. While
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moderate nutrient concentrations can potentially benefit biodiversity and fish produc-
tion [5], excessive nutrient enrichment of water bodies leads to substantial environmental
deterioration. Harmful algal blooms, submerged vegetation decline, and significant reduc-
tions in dissolved oxygen concentrations are only a few of the environmental downgrading
aspects, directly affecting ecosystem services as well, such as the supply of drinking water
and recreation activities [6,7].

To regulate or even prevent eutrophication, it is necessary to reduce nutrient supply
into aquatic environments through holistic, stringent management [4,8]. While some efforts
have led to improved water quality, the corresponding ecological quality recovery rate of
some impacted lakes, especially for lake macrophyte communities, is hindered due to the
high sedimentary phosphorus fluxes of shallow lakes [8].

In European Union (EU) countries, the establishment of the Water Framework Direc-
tive 2000/60/EC (WFD) [9] had a crucial role towards the protection of water bodies and
aquatic ecosystems. According to WFD, the surface waters, including lakes, of all Member
States, are obliged to conform to at least “good” ecological status. In order to achieve WFD
goals towards the protection of lake ecosystems, it is fundamental to set nutrient targets.
Specific boundaries for good ecological status could be used to maintain healthy biological
communities. For this, biological quality elements (BQE; e.g., phytoplankton, macrophytes,
phytobenthos, benthic invertebrate fauna, and fish) provide significant insights, combined
with physicochemical parameters (e.g., nutrients, oxygen condition, temperature, water
transparency, and salinity) and hydromorphological parameters (e.g., quantity and dynam-
ics of water flow), which act as supporting quality elements. However, different BQEs
and assessment methods are indicative of different pressures. Thus, it is important to
choose nutrient-sensitive elements and methods to effectively evaluate nutrient impacts
on ecological status. Assessment methods based on the BQE of phytoplankton are mostly
sensitive to eutrophication [4,10-12]. The ecological status of the BQEs can be expressed
using the Ecological Quality Ratio (EQR) by comparing observed ecological metrics to
reference conditions. Ranging from 0 (bad status) to 1 (high status), EQR indicates how
closely a water body matches minimally impacted sites, with intermediate values reflecting
poor, moderate, or good status [4,13,14].

Water bodies in moderate or worse status are required to be restored by EU Member
States to good or better status. Establishing nutrient thresholds plays a key role in achieving
this objective [1,4,12]. Once the boundary value has been set, water bodies can be classified
as either sites of concern or no concern, depending on whether their nutrient concentrations
exceed or fall below the boundary value, respectively [4]. Subsequently, appropriate
management strategies should be implemented to reduce environmental stressors, support
ecosystem restoration, and promote the long-term health and sustainability of aquatic
ecosystems [3,15].

Among the physicochemical parameters that significantly affect lake water quality,
the concentration of Total Phosphorus (TP) is often selected as a key parameter due to
its relation to eutrophication. Algal blooms in lakes have been linked to increased TP
concentrations, and phytoplankton biomass usually responds quickly to changes in phos-
phorus content and availability [1,16,17]. Phosphorus exhibits a strong pressure-response
relationship with phytoplankton metrics, which are often used as an expression of eu-
trophication. Thus, it is common among EU Member States to establish TP boundaries
for lakes, based on these metrics [1,8]. While other BQEs can also be used, phytoplankton
can be particularly effective for early detection as it exhibits a more immediate response
to eutrophication, due to its short generation time periods and nutrient intake from the
water column, while it is comparatively less sensitive to other pressures, such as chemical
or hydromorphological [10,18,19].
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Multiple studies have been performed for the establishment of boundary values
for TP associated with good ecological status in lakes, many of which are under the
WED, providing empirical data and guidance. Dolman et al. [20] compiled water quality
and phytoplankton data from German lakes and estimated that good ecological status
was achieved at TP concentrations of 20-35 ug/L for stratified lakes and 35-75 pg/L for
polymictic lakes. According to the implication of Free et al. [21] for setting TP boundaries
in Irish lakes focusing on phytoplankton data, the TP concentration at the threshold of
“good-moderate” status was between 22 and 28 pg/L. For Danish deep and shallow lakes,
boundaries for good ecological status have been suggested at 12.5-25 pg/L and 25-50 pg/L
of TP, respectively [22]. The only comprehensive approach proposed so far regarding Greek
lakes comes from Kagalou et al. [23]. In this work, the phytoplankton results collected
through the national monitoring program, during the period of 2015-2020, were used.
For deep and shallow natural lakes, the proposed TP boundary values supporting good
ecological status were 32 pug/L and 41 pg/L, respectively.

The aim of this study was to determine scientifically derived nutrient boundaries
delineating good from moderate ecological status, focusing on TP concentrations in
relation to phytoplankton, a sensitive BQE demonstrated by EQR. For this, we ap-
plied statistical models, provided by the Shiny toolkit [24], which is available online
(https:/ /shiny.freshwater-ecology.com/Tkit NEW/ (accessed on 12 May 2025), ensuring
reproducibility of the analyses. This work addresses five types of Greek lakes, i.e., deep,
shallow, and very shallow natural lakes and deep and shallow reservoirs, and constitutes
the first attempt to establish nutrient boundaries for the latter three types.

2. Materials and Methods
2.1. Datasets

In this study, data from 19 natural lakes and 26 reservoirs of the Greek national mon-
itoring network were utilized. Natural lakes were classified into three types: (a) warm
monomictic, deep lakes (type GR-DNL, 7 lakes), (b) polymictic, shallow lakes (type GR-SNL,
8 lakes), and (c) very shallow lakes (type GR-VSNL, 4 lakes) [23,25,26]. Reservoirs were cat-
egorized into two types: (a) deep reservoirs (type GR-DR, 20 lakes) [27,28] and (b) shallow
reservoirs (type GR-SR, 6 lakes). The spatial distribution of lakes is depicted in Figure 1,
while geometric parameters are provided in Supplementary Table S1. The Shiny toolkit [24]
was employed to perform data analysis aimed at determining nutrient boundaries for each
lake type. The datasets contained TP concentration (ug/L) and phytoplankton EQR values.
Water and phytoplankton samples were collected with a Nansen-type sampler (Free Flow
Water Sampler-436340, HYDRO-BIOS, Altenholz, Germany) from the euphotic zone of the
water column (2.5 x Secchi disk depth) in the pelagic zone [28], at the deepest point of
the lake, to ensure representativeness of the lake basin and consistency across samplings.
Water samplings for TP and phytoplankton were conducted 2—4 times during the growing
season of each year (May to October), while TP was additionally measured on a quarterly
basis [26,28], during the period of 2016-2023. TP concentrations were determined with the
persulfate digestion method [29], using an autoclave (AES-28, Raypa Metrolab, Barcelona,
Spain) and a spectrophotometer (U-5100 UV / VIS, Hitachi High-Technologies Corporation,
Tokyo, Japan). To prevent uneven distribution of data across and within months, seasonal
measurements were averaged to obtain mean annual TP values, which were subsequently
utilized in statistical analyses [23]. The phytoplankton EQR values were normalized and
calculated as mean values using national assessment methods [17,30], in compliance with
the WFD and its associated guidelines, to ensure comparability across lake types and
years, reduce site—specific bias, and provide a robust representation of ecological status.
Specifically, EQR values were calculated using the NMASRP assessment method for the
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GR-DR lake type, the HelPhy assessment method for GR-DNL and GR-SNL lake types, and
the GR-PTI assessment method for GR-SR and GR-VSNL lake types [17,26,31]. Microscopic
analyses were performed using an inverted trinocular fluorescence microscope DMIL
(Leica Microsystems GmbH, Wetzlar, Germany) and the concentrations of chlorophyll-a
were measured spectrophotometrically according to standard methods [29], with both

analyses required for the determination of EQR values. All chemical reagents used for the
analyses were obtained from Sigma-Aldrich (St. Louis, MO, USA). The datasets comprised
a total of 24, 51, 25, 52, and 27 lake-years for lake types GR-DNL, GR-SNL, GR-VSNL,
GR-DR, and GR-SR, respectively. These corresponded to 87, 197, 73, 136, and 58 samples
of phytoplankton and 161, 359, 143, 270, and 133 samples of TP, respectively, for the same
lake types.
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Figure 1. Lake types of the Greek monitoring network: Greek deep natural lakes (GR-DNL; 1-7)
Greek shallow natural lakes (GR-SNL; 8-15); Greek very shallow natural lakes (GR-VSNL; 16-19)
Greek deep reservoirs (GR-DR; 20-39); Greek shallow reservoirs (GR-SR; 40—45).
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2.2. Data Check

The datasets used in this study captured the spatial and temporal variability of water
bodies of similar types with a comparable number of years for each water body. Regarding
data visualization, scatterplots (EQR vs. TP) were generated using the toolkit, with the
option to exclude outliers if needed. For further inspection of the data, box plots were
used, where data could be distributed across the following ecological quality classes: High
(H), Good (G), Moderate (M), and Poor (P), with class boundaries of 0.8, 0.6, 0.4, and
0.2, respectively. Preliminary visualizations revealed the distribution of data along the
gradient of interest and the potential need for axes transformation to achieve linearity,
identified signs of heteroscedasticity, and finally, facilitated the selection of the method
for the determination of the most appropriate boundary value for TP concentration at the
threshold of good-moderate (GM) status, based on the available data.

2.3. Statistical Approaches

Two methods were used for estimating TP boundaries: linear regression analysis and
binomial logistic regression. Where a single stressor has a decisive influence on the response
of biology, as it applies in the case of TP concentration and phytoplankton [23,32], these
two methods are considered the most reliable approaches [33]. Linear regression assumes
a linear response between biology and nutrient concentration, i.e., EQR and TP, where
EQR is a continuous variable. A variance test and a Breusch-Pagan test were performed,
along with the inspection of the standard residuals plot, in order to check the assumptions
of a linear model, i.e., homoscedasticity and normality of residuals. Both EQR and TP
values are subject to measurement error, as they are simplified expressions of the complex
interplay between biological communities and environmental chemistry, as explained by
Kelly et al. [32]. For the minimisation of the variation in both variables, reduced major
axis regression (RMA) was performed, as recommended by Phillips et al. [24]. RMA
assumes equal uncertainty in the measurements of EQR and nutrient concentration. In
linear modeling, the correlation coefficient R* was employed to assess the strength of the
relationship between the two variables, with a threshold of >0.36 required for acceptance.

The most suitable alternative to linear regression is considered the Binary Logistic
Model (BLM) [32,33]. In BLM, EQR is handled as a categorical variable, and thus, data
are divided into two categories, on either side of the boundary of interest, i.e., biology
«good or better» (G+) represented by 1 and «moderate or worse» (M—) represented by
0. The boundary values can be derived using different threshold probabilities (Prob) of
biology being in «good or better» status, other than the default value of 0.5, but in any case,
threshold probabilities should remain below 0.9. Additional metrics used in BLM are the
Area Under the Curve (AUC) and the pseudo-rz, both used to assess model performance.
An AUC greater than 0.70 is required for demonstrating sufficient discriminatory capacity
in binary classification, while a pseudo-r? of at least 0.15 indicates an acceptable model
fit [4,24].

2.4. Confusion Matrix

To evaluate the effectiveness of models used in determining nutrient boundary values,
a confusion matrix was used, as proposed by Phillips et al. [4,24]. A confusion matrix
is a two-by-two table that compares biology and nutrient classifications and enables the
measurement of the uncertainty associated with a proposed boundary value. Biological
status is predicted from nutrient concentrations, with expectations shaped by whether
their values fall below or exceed the proposed boundary. The predicted biological status
is subsequently compared to the observed one. If these match, there is a true prediction;
otherwise, there is a false prediction. Predictions for good and not good status are referred
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to as positive and negative, respectively. Therefore, there are four types of predictions: true
positive—where both biota and nutrients are good; true negative—where both biota and
nutrients are not good; false positive—where nutrients falsely predict the biota to be at a
good status; and false negative—where nutrients falsely predict the biota to be at a not
good status.

A number of measures of classification accuracy accompany the confusion matrix,
as presented in detail by Phillips et al. [4,24]. The classification measures mentioned in
this study are explained below. Correct Classification Rate (CCR) and Misclassification
Rate (Misclass) are the proportions of correct and incorrect classifications, respectively.
The latter can be divided into false positives and negatives. False Positive (conditional)
rate or commission (Comm) is the proportion of false positives in all true negatives. False
negative (conditional) rate or omission (Omis) is the proportion of false negatives in all true
positives. Both are measures of “badness of fit”. Prevalence (Prev) refers to the proportion
of good biota in the dataset, highlighting potential imbalances that may affect model
outcomes. Kappa (kp) serves as a measure of overall classification accuracy, and should
exceed 0.32 to suggest model adequacy, while a minimum of 0.21 indicates fair agreement
between the binary classifications. All measures should be evaluated collectively to ensure
a comprehensive assessment.

2.5. Selection of the Most Appropriate Approach

The most suitable approach in order to determine TP boundaries was selected in
accordance with the recommendations outlined by Phillips et al. [4,24]. The methods BLM
and/or RMA were applied to the datasets. For each predicted boundary value, a confusion
matrix was constructed in order to evaluate classification performance. Results were
assessed using the specified measures, and finally, the most appropriate boundary values
were selected, considering the minimisation of commission errors without significantly
increasing omission errors (i.e., Omis < 2 x Comm), and the maximization of the overall
classification accuracy (i.e., maximum kp).

3. Results

The analyzed datasets contained results of TP concentrations and phytoplankton EQRs
from five lake types of the Greek national monitoring network, i.e., GR-DNL, GR-SNL,
GR-VSNL, GR-DR, and GR-SR (Figure 1). In order to investigate the relationship between
the two variables, scatterplots and boxplots were employed as part of exploratory data
analysis (Figure 2). The TP values were log10-transformed to improve data distribution.
Each lake type contained a sufficient number of records (i.e., >10), as shown in Table 1, to
support meaningful comparisons.

Table 1. Summary of the predicted boundary values of TP concentrations (ug/L) at the threshold
of good-moderate (GM) status, with lower (GML) and upper (GMU) values per lake type, obtained
by linear (RMA) and categorical (BLM) methods, along with model performance and classification
accuracy measures. N: Number of records.

Lake Type Method N GM GML GMU AUC R?(Pseudo-r?) Prob Prevn CCR  Misclass Omis Comm kp
GR-DNL BLM 24 39 30 50 0.97 (0.84) 0.43 0.58 0.92 0.08 0.07 0.10 0.83
GR-SNL BLM 51 42 28 73 0.77 0.27) 0.28 0.26 0.75 0.25 0.23 0.26 0.43

GR-VSNL BLM 25 76 51 266 0.82 (0.36) 0.26 0.28 0.68 0.32 0.29 0.28 0.39

GR-DR BLM 52 32 18 49 0.86 (0.51) 0.89 0.89 0.85 0.15 0.15 0.17 0.48
GR-SR RMA 27 50 31 65 NA 0.61 NA 041 0.85 0.15 0.18 0.13 0.69
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Figure 2. Scatterplots showing the relationship between phytoplankton EQR and TP concentration
(ug/L) (a—e), and boxplots showing the range of TP (ug/L) across ecological quality classes High (H),
Good (G), Moderate (M), Poor (P) (f-j) and binary quality classes Good or better (G+) and Moderate
or worse (M—) (k—o) in lake types: GR-DNL, GR-SNL, GR-VSNL, GR-DR and GR-SR. The p-values

represent the significance of the Wilcoxon test results.
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The scatterplots from the datasets across all lake types (Figure 2a—e) revealed a rela-
tionship between phytoplankton EQR and TP concentration. A sufficiently strong linear
relationship was identified in lake types GR-DNL and GR-SR (R? > 0.6), while a moderate
correlation was observed in lake types GR-SNL, GR-VSNL, and GR-DR (R2 =(0.4). Data
were distributed into three or four ecological quality classes (High, Good, Moderate/Poor)
in the datasets of four lake types (Figure 2f,g,i,j), but this was not the case for GR-VSNL,
where the high class was absent (Figure 2h). Around the boundary of interest, which
was the GM boundary in this study, a balanced distribution of data was evident only in
the dataset corresponding to the GR-SR lake type, as the boxplots of Figure 2 revealed.
Moreover, the assumptions underlying linear regression were satisfied only for the same
lake type. For the lake types GR-SNL, GR-VSNL, and GR-DR, there was a great over-
lap between the good and moderate classes with no significant difference between them
(p > 0.05, Figure 2g—i). However, when classes were merged into G+ and M— classes, a
significant difference between the two appeared (p < 0.05, Figure 21-n), justifying the use of
BLM in these cases. For GR-DNL, there was a significant difference between the good and
moderate classes (p < 0.05, Figure 2f), but the assumptions of linear regression were not met.
Nevertheless, the G+ and M— classes differed at a significant level (p < 0.05, Figure 2k),
supporting the use of BLM in this case, as well. Overall, preliminary data exploration
suggested that the linear regression method (RMA) may not be suitable for deriving TP
boundaries for the four lake types GR-DNL, GR-SNL, GR-VSNL, and GR-DR, using the
available data. For the GR-SR lake type, good and moderate classes differed significantly
(p < 0.05), as shown on the relevant boxplot (Figure 2j), as well as good or better and mod-
erate or worse classes (p < 0.05, Figure 20). Consequently, both RMA and BLM appeared to
be suitable methods for establishing TP boundaries for this type.

Table 1 summarizes the proposed GM boundary values for TP concentration (ug/L)
for all lake types, determined following the guidance of Phillips et al. [4,24]. Regression
models offer the most reliable estimation of the average response of water bodies within a
given dataset. However, individual water bodies may deviate from this estimation due to
the uncertainty of both data and the model used [32]. Therefore, the GM boundary value is
supplemented by a range defined by lower (GML) and upper (GMU) values, as presented
in Table 1. The measures of model performance (i.e., R? for RMA, AUC, and pseudo—r2
for BLM), along with the key classification accuracy measures of the confusion matrix,
which was developed for each proposed boundary value, are also included in Table 1. The
comparative relationship between commission and omission values is presented in Figure 3.
A boundary value may be considered sufficiently precautionary, i.e., neither excessively
conservative nor inadequately protective, when the ratio between the two errors lies within
the designated green zone, where the probability of commission error remains acceptably
low while omission has not markedly escalated [4,24].

To begin with, the GR-DNL dataset exhibited quite a balanced distribution (Prev = 0.58).
The GM boundary for TP concentration was 39 ug/L (range: 30-50 pg/L), as shown in
Table 1. BLM was fitted to this dataset with exceptional model performance (AUC = 0.97,
pseudo-r? = 0.84). The threshold probability of being in good or better status was set to
43%. The overall success of classification was high, as indicated by CCR, Misclass, and kp
values (0.92, 0.08, and 0.83, respectively), reflecting that the majority of classifications had
been carried out correctly. Moreover, there was a balance between the misclassification rates
(Omis = 0.07 and Comm = 0.10), leading to a precautionary boundary value, as illustrated in
Figure 3. As a result, TP appeared to be a good indicator of phytoplankton status for the lake
type GR-DNL.



Water 2025, 17, 3349

90of 16

10 @ GR-DNL

GR-SNL
A GR-VSNL
@ GRDR
% GR-SR

o
o

o
o)

<
'S

Commission (false negative)

o,
2
0.2 S
EhS
RV
o &
-
00 A e
0.0 0.2 0.4 0.6 0.8 1.0

Omission (false positive)

Figure 3. Comparison between Commission and Omission for lake types: GR-DNL, GR-SNL, GR-
VSNL, GR-DR, and GR-SR.

Proceeding with the dataset of the lake type GR-SNL, the GM boundary for TP con-
centration was 42 ug/L (range: 28-73 ug/L), as presented in Table 1. BLM was fitted to this
dataset as well, with acceptable model performance (AUC = 0.77, pseudo-r? = 0.27). This
dataset was quite unbalanced (Prev = 0.26), with moderate or worse records dominating.
Due to the very low prevalence value, omission and commission tend to become more sen-
sitive and potentially less reliable, as data distribution influences the probability threshold
and the classification accuracy [4]. Therefore, it was examined whether a more appropriate
GM boundary could be derived using the model with the best overall classification, i.e.,
maximum kappa. The model of maximizing kappa generated the same boundary value as
the model of balancing omission and commission, with identical classification measures.
Consequently, the most appropriate boundary value based on the available data appeared
to be the previously mentioned, accompanied by a threshold probability of 28%. The
overall classification success was moderate as the CCR, Misclass, and kp values indicated
(0.75,0.25, and 0.43, respectively). The misclassification rate was equally divided into false
positives (Comm = 0.26) and false negatives (Omis = 0.23), resulting in a precautionary
boundary (Figure 3), despite the relatively low accuracy.

For the GR-VSNL lake type, BLM was applied for the determination of the bound-
ary value for TP. The one suggested by the toolkit was generated by the balance be-
tween omission and commission (0.29 and 0.28, respectively), which was 76 pg/L (range:
51-266 pg/L), as shown in Table 1. The performance of the model was very good
(AUC =0.82, pseudo-r2 = 0.36), while the overall classification accuracy was moderate
(CCR = 0.68, Misclass = 0.32) with fair agreement between classifications (kp = 0.39). The
threshold probability of being in good or better status was set to 26%. The dataset exhibited
a notable imbalance (Prev = 0.28) with the moderate or worse class being the dominant,
implying the possibility of overestimation of the predicted boundary value. Therefore,
the model of maximum kappa was considered additionally, in order to estimate if its
predicted GM boundary value was more appropriate in this case. The value obtained by
this model used a lower threshold probability (18%) and was higher (TP = 88 ug/L, range:
63-266 pg/L), with better overall classification accuracy (kp = 0.53, CCR = 0.72,
Misclass = 0.28). However, false positives (Comm = 0.33) greatly exceeded false nega-
tives (Omis = 0.00), demonstrating that such a value may not be precautionary enough,
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probably failing to protect impacted sites. Thus, in this instance, the initially proposed
GM boundary value for TP (76 pg/L) appeared to be the most suitable, as it was more
protective (Figure 3), although at the expense of overall accuracy. The broad range of the
predicted boundary value reflects considerable classification uncertainty. Enhancing the
dataset may lead to a significant reduction in misclassification rate, ultimately contributing
to improved model accuracy and reliability.

For the lake type GR-DR, the dataset was also unbalanced, with a predominance of the
records classified as good or better (Prev = 0.89), implying a possible underestimation of
the boundary value. In addition to that, there was a large number of truncated EQR values
equal to 1 (Figure 2e). BLM was fitted to this dataset with very good model performance
(AUC = 0.86, pseudo-r* = 0.51). The boundary value for TP suggested by the toolkit
corresponded to the one derived from the balanced omission and commission (0.15 and
0.17, respectively), which was 32 pg/L (range: 18-49 ug/L), as presented in Table 1. The
threshold probability was set to 89%. The overall classification accuracy was adequate
(CCR =0.85, Misclass = 0.15, kp = 0.48). As mentioned previously, the occurrence of extreme
prevalence, as is also the case here, requires caution regarding the proposed boundary value.
For that, the boundary value generated by the model with the best overall classification
was evaluated, as well. Selecting the maximum kappa model (kp = 0.67) led to a lower
probability threshold (Prob = 85%) and a higher boundary value for TP, which was equal
to 35 ug/L (range: 23-64 ng/L). The misclassification rate decreased (Miscl = 0.08), along
with the false negatives (Omis = 0.07), while no change occurred at the false positives
(Comm = 0.17). The initially proposed boundary seems sufficiently precautionary (Figure 3)
in contrast to the alternative, making it potentially more appropriate, albeit with some
compromise in accuracy. Nonetheless, caution is warranted due to signs of bias arising
from the highly imbalanced distribution of binary classifications (Prev = 0.89) and the
substantial number of truncated EQR values present in the dataset. An expanded dataset
in future revisions may enhance the reliability of the estimation.

The GR-SR dataset was balanced (Prev = 0.41), encompassing the full spectrum of
disturbance in a relatively uniform way. It showed no signs of heteroscedasticity, class
overlap, or truncated EQR values, suggesting it was likely the only case where RMA could
be reliably applied to determine TP boundary using the available data. The GM boundary
obtained for TP, assuming a balance between omission and commission (0.18 and 0.13,
respectively), was 50 pg/L (range: 31-65 ug/L), considered as precautionary enough
(Figure 3). This resulted in a misclassification rate of 0.15. The model performance was
adequate (R? = 0.61), and the kappa value showed substantial agreement (kp = 0.69). For
comparative purposes, BLM was applied as well to this dataset, with very good model
performance (AUC = 0.89, pseudo-r? = 0.56). The proposed boundary value for TP using
a threshold probability of 43% was equal to 54 pug/L (range: 33-88 ng/L). The values of
omission and commission were similar (0.18 and 0.19, respectively), and the kappa value
indicated a substantial model performance (kp = 0.62). However, the confusion matrix
revealed a higher misclassification rate (Misclass = 0.19), implying increased uncertainty;,
further reflected by the wider range of this proposed boundary. BLM yielded a bound-
ary value comparable to that of RMA, but due to higher overall classification accuracy,
lower misclassification rate, and commission value, the RMA-derived boundary value was
selected as more appropriate for this case, as shown in Table 1.

4. Discussion

In this study, TP boundary values were established for natural lakes and reservoirs of
the Greek national monitoring network, grouped into five types. The BLM was used for
deriving boundaries of TP in four lake types (GR-DNL, GR-SNL, GR-VSNL, and GR-DR),
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and RMA was used in the fifth type (GR-SR). The water bodies of each type are likely
to achieve good ecological status, below the predicted GM boundary value. The GM
boundaries for TP, based on available data, were as follows: 39 and 32 ug/L for GR-DNL
and GR-DR types, 42 and 50 ug/L for GR-SNL and GR-SR types, and 76 ug/L for GR-
VSNL. The lowest values were derived using data from deep water bodies (GR-DNL and
GR-DR), intermediate values using data from shallow water bodies (GR-SNL and GR-5SR),
and the highest value using data from very shallow water bodies (GR-VSNL). In general,
TP boundaries were lower in deep lakes than in shallow lakes, confirming the influence
of depth, as reported by Cardoso et al. [16] and Zhou et al. [34]. Lake depth relates as
well to the ecoregion and land use of lake ecosystems. Shallow lakes lie, in general, in
lowland regions and are more exposed to agriculture and urban development, leading to
extensive nutrient input. On the contrary, deep lakes are often found in upland regions,
where human disturbance is low or absent. Lake productivity is largely determined by
human activity, which is more intense in lowland fertile regions, where many shallow lakes
are encountered, than in mountains and highlands [34].

Lake ecosystems are susceptible to eutrophication, since the majority act as sinks
accumulating external nutrient loads. Deep lakes generally exhibit greater dilution capacity
and seasonal thermal stratification, which restricts nutrient availability to phytoplankton
in surface waters by trapping nutrients below the photic zone. In contrast, shallow and
very shallow lakes, due to their smaller volume and lower capacity for nutrient input
dilution, seem to be more sensitive to anthropogenic disturbances. Additionally, strong
interactions between water and sediment are typically observed in shallow lakes, where
sediment resuspension occurs more frequently. As a result, internal nutrient loading can be
considered a significant nutrient input, thereby contributing to higher productivity [35-37].
Numerous studies have identified internal phosphorus release from sediments as a key
driver of eutrophication, often exerting a stronger and more persistent effect than external
inputs from the catchment. Internal loading can sustain elevated nutrient concentrations
even under conditions of reduced external supply, thereby prolonging eutrophic states and
hindering management efforts [38,39]. This highlights the need to account for sediment—
water interactions when assessing nutrient dynamics and setting ecological boundaries.

According to Kagalou et al. [23], the proposed boundary for TP concentrations sup-
porting good ecological status in Greek deep and shallow natural lakes was 32 and
41 pg/L, respectively. These values are in line, although lower, with the predicted values for
types GR-DNL and GR-SNL, presented in our study. Phillips et al. [4] used phytoplankton
and TP concentration data from very shallow lakes located in Europe. The suggested GM
boundary value range for TP was 60-83 ug/L. Our approach for the type GR-VSNL falls
within this range. Poikane et al. [1] in their study about setting nutrient thresholds in lakes
from several European countries, used, among others, phytoplankton data from reservoirs
found in the Mediterranean region, characterized as deep, large calcareous (type LMS), to
which our lake type of GR-DR could be compared [27,28]. Their predicted TP boundary
value for achieving good ecological status was 43 pg/L, lying over the boundary proposed
for GR-DR in our study. This suggests that our assessment adopts a more precautionary
approach compared to the broader nutrient limits presented in their analysis. Although
European standards provide a general reference point, regional ecosystems often necessi-
tate more stringent standards to safeguard resilience under region-specific environmental
conditions [4]. Unfortunately, a comparative boundary value for the type GR-SR could not
be located. Overall, the proposed boundaries of this study appear to align well with those
established in other European countries, as outlined previously, supporting their relevance
and applicability.
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This study is subject to certain limitations that merit consideration in the interpretation
of its outcomes. Long-term datasets were used, derived from samplings that capture the
spatial and temporal variability of water bodies within each lake type. However, while
these datasets offered a solid foundation for analysis, data distribution was not balanced
in most cases, with a possible impact on the predicted boundary value (i.e., over- or
underestimation). Additionally, the predicted nutrient boundary values were derived based
on the current conditions and may require future revision, considering the dynamic nature
of aquatic ecosystems [40]. Extreme climatic events (e.g., droughts, floods) are expected to
become more frequent in the future, intensifying their impact on nutrient load in aquatic
ecosystems [41]. Moreover, our datasets continue to expand over time, incorporating more
lake years, but also, more water bodies per lake type due to the extension of the national
monitoring network. This expansion is expected to improve the robustness of the statistical
analyses, reduce the influence of isolated extreme events or atypical water bodies, and
enhance the reliability and representativeness of the nutrient boundary values derived.
Furthermore, other biological quality elements, such as macrophytes, along with additional
environmental parameters (e.g., chlorophyll-a and water transparency expressed as Secchi
disk depth), could probably provide useful data leading to further analyses and results.

The co-limitation of phosphorus and nitrogen should also be considered in the future.
Phytoplankton is known to be particularly sensitive to phosphorus, but the significant
influence of nitrogen has to be acknowledged, as well [42,43]. Moreover, the co-limitation
of these two nutrients has been observed in many Greek lakes [44]. In this study, however,
it could not be taken into consideration due to data unavailability. It remains, never-
theless, a priority for future investigation, as under projected climate scenarios, nitrogen
cycling and eutrophication processes in Mediterranean lakes are expected to be significantly
affected [45].

The determination of boundary values is influenced by the selected BQEs, the per-
formance of the applied method, and expert evaluation concerning the ecological validity
and acceptability of the proposed limits [23]. Careful consideration of local variation
and lake typology is required. Boundaries should reflect both the regional background
and the ecological responses of water bodies. In countries of Southern Europe, such as
Greece, higher TP levels may be considered acceptable due to warmer climates, longer
growing seasons, and different lake typologies [19]. Such factors can influence nutrient
cycling and biological productivity [40], rendering direct comparisons with boundaries
from cooler climates potentially inaccurate. Consequently, adjusting boundary values to
reflect regional conditions is essential for achieving accurate classification and ensuring
that water management strategies are ecologically appropriate and locally relevant. Addi-
tionally, as climate change increasingly affects hydrological regimes, thermal conditions,
and biological responses, future boundary definitions may need to become more stringent
to safeguard ecological integrity. This aligns with the conceptual approaches proposed by
Free et al. [40], which emphasize the need to reassess reference conditions and classification
boundaries in response to climate—driven shifts in aquatic ecosystems. Greece is regarded
as one of the European regions most vulnerable to climate change, with rising temper-
atures and declining rainfall exacerbating existing water scarcity. Recent studies have
documented warming and altered precipitation trends in Greek lakes [46], and projected
alterations in hydroperiods of northern wetlands [47], underscoring the need for adaptive
boundary setting.

5. Conclusions

In conclusion, the establishment of nutrient concentration boundary values within
the framework of achieving WFD goals can be performed successfully using the pressure—
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response relationship between nutrients and biological communities. In lakes, phytoplank-
ton is considered a reliable biological quality element for the assessment of eutrophication
due to its fast response to changes in nutrient concentrations in the water column, and
it clearly participates in a strong relationship with phosphorus. This structured the basis
of our study, which drew upon a complete dataset and, with the application of the Shiny
toolkit, led to realistic GM boundary values for TP concentration. Despite its robustness,
the proposed methodology is constrained by imbalances in data distribution, sensitivity to
extremes and atypical water bodies, and reliance on present ecological conditions. Conse-
quently, the derived nutrient boundaries could be further refined as monitoring datasets
expand and climatic variability intensifies. Furthermore, the toolkit could be effectively
applied to set boundaries for both water transparency and nitrogen concentrations, consid-
ering the condition of nutrient co-limitation observed in many Greek lakes. Overall, this
toolkit provides a transparent and reproducible framework for defining nutrient boundaries
in lakes. Such boundaries can support water authorities in prioritizing interventions, evalu-
ating compliance with ecological objectives, and supporting adaptive management. In this
way, it strengthens evidence—based policy and enhances the effectiveness of long—term
monitoring programs.
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