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Wetlands are highly dynamic, with many natural and anthropogenic drivers causing seasonal, periodic or per-
manent changes in their structure and composition. Thus, it is necessary to use time series of images for accurate
classifications and monitoring. We used all available Sentinel-1 and Sentinel-2 images to produce a national
wetlands map for Albania. We derived different indices and temporal metrics and investigated their impacts and
synergies in terms of mapping accuracy. Best results were achieved when combining Sentinel-1 with Sentinel-2
and its derived indices. We reduced systematic errors and increased the thematic resolution using morpho-
metric characteristics and knowledge-based rules, achieving an overall accuracy of 82%. Results were also vali-

dated against field inventories. This methodology can be reproducible to other countries and can be made
operational for an integrated planning that considers the food, water, and energy nexus.

1. Introduction

The value of wetlands in terms of ecosystem services is widely
recognized by the scientific community (Finlayson et al., 2005; Mitsch
and Gosselink, 2000; Russi et al., 2012) and policy makers (e.g. playing
important roles in the Paris Agreement, the Sendai Framework for
Disaster Risk Reduction, or other multilateral biodiversity related
agreements (Ramsar Convention on Wetlands, 2018)). However, wet-
lands are still being degraded at global scales, and degradation trends
have increased since 2000 (Dixon et al., 2016; Ramsar Convention on
Wetlands, 2018). The main drivers of these trends are agricultural
expansion, intensive wood, sand and gravel harvesting, dam building,
agricultural and urban waste, drainage and salinization (Finlayson et al.,
2005; Ramsar Convention on Wetlands, 2018). This case study focuses on
Albania, a country that hosts one of the few last systems of large and
undammed rivers of Europe. Some segments of these rivers are biodi-
versity hotspots for fish and mollusks and harbor high rates of endemisms
(Weiss et al., 2018). However, many other rivers in Albania are heavily
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dammed. Over 90% of its electricity is already provided by hydropower
and authorities are planning to increase investments in it. Besides,
another 3000 hydropower projects are planned in the Balkan region
(Weiss et al., 2018). Some of these projects have been financed by Eu-
ropean public banks (Sikorova and Gallop, 2015), but they are facing
strong social opposition from academic, conservation, and local organi-
zations (Sikorova and Gallop, 2015; Vejnovic and Gallop, 2018; Weiss
et al., 2018). For instance, 37% of the planned projects are located in
protected areas, and opponents argue that there is a lack of disclosure and
several negative environmental and social impacts caused by some of
these projects (Vejnovic and Gallop, 2018).

According to the Global Outlook on Wetlands (Ramsar Convention on
Wetlands, 2018), from the Ramsar Secretariat, properly managed wet-
lands can directly and indirectly contribute to most of the Sustainable
Development Goals (SDGs). This puts wetlands in a central position in the
debate about sustainable development. The Ramsar Convention as well
as UN Environment are two major stakeholders when it comes to
assessing the status and trends of wetland ecosystems and their changes
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over time. Within the framework of the SDGs, especially indicator 6.6.1
“Change in the extent of water-related ecosystems over time” directly
requires countries to report on their national wetlands regularly (“UN
stats Metadata repository,” 2018). Earth Observation (EO) can generate
the information that policy makers need to make and justify decisions,
and can also support efficiently the implementation of the SDGs
(Paganini et al., 2018). The GEO-Wetlands Initiative is a collaborative
partnership aiming to make this step as easy as possible for countries by
providing methods, tools, guidelines, training and knowledge [www
.geowetlands.org]. This case study is one example of how
state-of-the-art EO technology can efficiently support wetland mapping
and monitoring at national scale.

The last official inventory of wetlands of Albania is from 2003 and it
was part of the MedWet Inventory System initiative (Marieta et al., 2003;
Perennou et al., 2012). Since then, the paradigm in EO has experienced a
revolution with an increasing number of freely available data sets, fusion
of Synthetic Aperture Radar (SAR) and optical sensors, general advances
in algorithms for classification and modelling, and ultimately, the cloud
computing platforms (Gorelick et al., 2017; Joshi et al., 2016; Stefanski
et al., 2014; Waske and Benediktsson, 2007). Mapping large areas that
include dynamic cover types such as wetlands, with sufficient thematic
resolution and accuracy, requires the use of large numbers of images
from different sensors. This poses a challenge in terms of available
computing power and on technical capacity, both factors considered as
bottlenecks that hinder development and the implementation of
informed land management policies and plans of developing countries.
Cloud computing platforms offer new opportunities to bypass these
bottlenecks and to process large amounts of information on an opera-
tional basis. They have prompted a number of studies that use time series
of images for classification of either specific land cover types classes (e.g.
rice mapping (Dong et al., 2016), open water bodies (Hardy et al., 2019),
cropland extent (Xiong et al., 2017) or settlements (Patel et al., 2015)), or
more complex land cover maps at national (Mack et al., 2017) or even at
continental scale (Pflugmacher et al., 2019). Mapping at national scales is
a more practical approach, since monitoring and reporting tasks are often
needed at national level. Time series of images can be processed using
data fusion techniques (Gevaert and Garcia-Haro, 2015), data interpo-
lation (Inglada et al., 2017) best pixel selection (Griffiths et al., 2013),
fitting time series functions (Zhu and Woodcock, 2014), or aggregation of
data into meaningful multitemporal metrics (Carrasco et al., 2019; Mack
et al., 2017; Mahdianpari et al., 2018; Pflugmacher et al., 2019). These
metrics (e.g. maximum, mean and minimum) can be applied to the bands
directly or to indices derived from them. They are representative of the
different seasonal stages of the land cover caused by phenological, land
use, or inundation regimes. Time series of SAR imagery are instrumental
in covering the complete seasonality of wetlands (Muro et al., 2019;
White et al., 2015), especially in areas of persistent cloud cover where
images from the dry period and rainy (and therefore cloudy) period are
needed. Using both, SAR and multispectral imagery has proven to ach-
ieve higher classification accuracies (Joshi et al., 2016; Stefanski et al.,
2014; Waske, 2014).

Even when using the full spectral and temporal resolution, there are
limitations to the classification power of EO. Coupling EO data with other
spatial information can return higher accuracies and increase the the-
matic resolution (Manandhar et al., 2009; Stefanov et al., 2001; Van der
Voorde et al., 2007; Wilkinson, 1996). Examples of the use of ancillary
spatial information in mapping tasks include: topographic information
(Hird et al., 2017; Lang et al., 2013), spatial explicit metrics (size, shape,
edge length) (Herold et al., 2003), precipitation distribution (Pflug-
macher et al., 2019) or distance to water bodies and elevation ranges
(Long and Skewes, 1996) among many others.

We use the cloud computing platform Google Earth Engine (GEE), to
map the wetlands of Albania at national scale by using the whole archive
of Sentinel-1 and Sentinel-2 imagery for the period June 2015-June
2018, and a set of flexible knowledge-based rules.

The purpose of this study is to:
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e Assess whether the combination of optical and SAR data with
knowledge-based rules enhances the classification of wetlands.

e Apply the methodology and demonstrate how it can help to fulfill
reporting commitments at national level.

e Update the inventory of Albanian wetlands for the target year 2017.

2. Materials and methods
2.1. Study area

Albania (Figure 1) has an area of 28.784 km?. It has a steep orography
in the east, with most rivers flowing westwards across extensions of
floodplains used for agriculture. Several segments of many rivers have
been channelized and there are abundant small dams used to store water
and produce hydropower scattered over the country. However, there are
still several large rivers that remain in pristine conditions (Weiss et al.,
2018). Agriculture, energy and tourism are three of its strongest eco-
nomic sectors (EcoAlbania, 2017; FAO, 2015).

2.2. Datasets

We used all the Sentinel-1A and Sentinel-2A images available in GEE
from June 2015 to June 2018. Sentinel-1 images are provided with dual
polarization (VV/VH) and as Ground Range Detected. They have been
processed by GEE in the Sentinel Application Platform (SNAP) using the
following steps: Apply orbit file, noise removal, thermal noise removal,
radiometric calibration, terrain correction using SRTM 30, and conver-
sion to dB via log scaling (GEE, 2018). Sentinel-2 images are processed to
top-of-atmosphere values. Thus, we used imagery from around 100
overpasses for Sentinel-2, and 264 overpasses for Sentinel-1. Out of all
the Sentinel-2 imagery acquired we created a median composite (dataset
S2 henceforth). Clouds were masked using the quality band of the
Level-1C products (ESA, 2012), and cloud shadows were masked using
azimuth and zenith angles to estimate the position of the shadow. Out of
the same Sentinel-2 images we created another multitemporal composite
using the 90" and 50" percentiles of three indices; the normalized dif-
ference vegetation index (NDVI) (Tucker, 1979) (1), the normalized
difference water index (NDWI) (Mc Feeters, 1996) (2), and the normal-
ized difference built-up index (NDBI) (Zha et al., 2003) (3). The 90™ and
50th percentiles of these indices represent the maximum and median
conditions of vegetation and water. Minimum metrics were not used
because they were too affected by cloud and shadow noise, and the
maxima of the NDBI already correspond to the minima of NDWI and
NDVI. We refer to this dataset as NDIs (normalized difference indices).

B8a — B4

NDVI=——— 1
B8a + B4 M
B3 — B8a

NDWI=——— 2
B3 + B8a 2
B11 — B8a

NDBl =————
B11 + B8a ®

Out of the Sentinel-1A images accessed, we created another multi-
temporal composite (dataset S1 henceforth) using the 99, 50™, and 5™
percentiles of both polarizations and in ascending orbit. We used the 5t
percentile instead of the 1% to eliminate outliers occurring in the seams
between images. Currently, Sentinel-1 data from GEE is already clamped
to the 99" and 1% percentiles. All datasets, multispectral and SAR, were
resampled to 20 m.

2.3. Classification
We based our classification scheme on the Millenium Assessment of

Ecosystem Services (MAES), modified to include Ramsar wetland types
(Fitoka et al., 2017), mapping the following ten classes: bare soil,


http://www.geowetlands.org
http://www.geowetlands.org

J. Muro et al.

Heliyon 6 (2020) e04496

42"(:'0"N

41 "0|'0"N

40"0.'0"N

Macedonia

Greece

SRTM (m.a.s.l)

. 2730
_B

B Water bodies

100
km

50

I
20°0'0"E

1 I
21°0'0"E 22°0'0"E

Figure 1. Location of Albania with its Digital Elevation Model and water bodies.

permanent water bodies, intermittent water bodies, marshlands, crop-
land, grassland, heathland and scrubland, deciduous forest, coniferous
forest and built-up. “ntermittent water bodies™ refer to areas that are bare
when not inundated (e.g. intertidal mudflats and the water spread area of
many water reservoirs). “Marshlands” are areas that have vegetation and
water, at least temporarily. “Heathland and scrubland” are areas domi-
nated by shrub-like vegetation. The other 7 classes are self-explanatory.

We applied a Random Forest (Breiman, 2001) classifier using 500
trees in GEE and collected a set of 300 polygons for training and vali-
dation. The polygons were delineated using aerial imagery of 2015 at 20
m and 8 m resolution, available at the portal of the State Authority for
Geospatial Information (ASIG) (https://geoportal.asig.gov.al). Each class
had circa 30 polygons about the same size except for the class “cropland”
which were twice larger. This was necessary because it was the class with
the largest extension and variability due to the different crops and
rotation patterns. For each dataset and combination of datasets we

performed a cross-validation in which 2/3 of the polygons within each
class were randomly selected for training and 1/3 for validation.

2.4. Post-classification processing

The post-classification processing has two parts; removal of areas
unlikely to be a wetland and prone to errors, and the application of
knowledge-based rules.

The different datasets used have their own inherent noise and errors.
For example, SAR data is prone to slant-range distortions (foreshortening
and layover) in areas with a complex relief (White et al., 2015). Thus, we
used morphological constrains to create a Potential Wetlands Mask
(PWM) to mask out these artifacts that would cause classification errors.
Out of the SRTM digital elevation model we calculated a set of 3 de-
rivatives: Topographic Wetness Index (TWI) (Bohner J. and Selige T.,
2006), Multiresolution Index of Valley Bottom Flatness (MrVBF) (Gallant
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and Dowling, 2003), and the Terrain Surface Convexity Index (TSC)
(Iwahashi and Pike, 2007). These datasets were combined with the
Global Surface Water (GSW) product (Pekel et al., 2016) and then
normalized to values from O to 1. The result is a map showing the like-
lihood of each pixel of being a wetland. We then divided this map into
two categories: areas with potential for being a wetland (the PWM) and
areas unlikely of being a wetland. In order to set the threshold between
these two categories we used the Otsu histogram-based thresholding
method (Otsu, 1979). This method maximizes interclass variance and it
works best with bi-modal distributions, such as in our case. Training,
classification and validation was limited to areas within the PWM. This
way, artifacts produced by the terrain on SAR (slant-range) and in optical
data (illumination angles) were reduced.

Statistical mapping (e.g. Random Forest) can seldom produce accu-
rate results on its own. Knowledge-based criteria and ancillary infor-
mation can be used to produce outputs with the thematic resolution and
mapping accuracy needed (Connolly and Holden, 2009; Long and
Skewes, 1996; Perennou et al., 2018; Van der Voorde et al., 2007). To
that end, we applied an additional set of knowledge-based rules to
further separate the land cover classes. These rules are based on theo-
retical considerations and observations, and are common practice to
enhance the result of remote sensing-based classifications (Manandhar
et al., 2009; Stefanov et al., 2001; Van der Voorde et al., 2007). To
separate “riverbanks” from other bare surfaces we applied a 120 m buffer
to the river network. All “heathland and scrubland” areas within this
buffer were reclassified as “riverine scrubs”. An additional class of
“beaches and coastal dunes” was created for all bare surfaces within 50 m
from the shoreline. Figure 2 shows the classification and
post-classification workflow used. The final result is a classification of six
wetlands classes (counting “beaches and coastal dunes” as a wetlands)
and seven non-wetland classes.

2.5. Accuracy analysis

Besides the cross-validation applied to the results of the classification
of each dataset (i.e. S1, S2, NDIs and their combinations) we performed
an accuracy analysis of the final product (i.e. after the application of the
post classification rules). For validating this dataset, we performed a
stratified random sampling of 527 additional points using the platform
Laco-wiki (See et al., 2017). The platform gives access to Google, Bing
and satellite imagery enabling a visual interpretation of the validation
samples and generates accuracy reports. Additionally, we compared our
results with the last inventory of wetlands, carried out in 2001-2003
(Marieta et al., 2003). Through visual inspection we discarded from the
inventory the wetlands that were not visible in current high resolution
imagery and calculated the proportion of wetlands correctly identified.

Archive imagery Multitemporal

metrics
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3. Results
3.1. Impact of the different datasets on the mapping accuracy

This analysis was carried out with the 10 initial land cover classes and
the results of the cross-validation; overall accuracy (OA), producers' ac-
curacy (PA) and users’ accuracy (UA). The classifications produced using
the three datasets (S1, S2 and NDIs) or combining S1 and NDIs achieved
the highest accuracies, followed by the combination of S1 and S2, and the
combination of S2 and NDIs (Figure 3). When using each dataset sepa-
rately, accuracies were significantly lower than any combination of
multiple datasets.

When using S1 and NDIs for classification, the class “marshlands”
occupied a larger area at the expense of “cropland” and “heathland and
scrubland” (Table 1). When using S1 and S2, the class “intermittent water
bodies” was overestimated at the expense of “permanent water”, mostly
at the sea. When using only the optical datasets (i.e. NDIs and S2) the
class “built-up” was greatly overestimated at the expense of “bare soil”
and “heathland and scrubland” (UA of built-up 69%, Appendix A).

Areas of steep slope oriented towards the Sentinel-1 satellite returned
very high backscatter values, which misclassified as “Built-up” regardless
of their true class. Despite the PWM excluded most of these errors, some
remained along small rivers and creeks between steep mountains.

The distinction between “coniferous forest” and “deciduous forest”
was equally good regardless of the combination of datasets used, as long
as more than one were used. The confusion between “heathland and
scrubland” and “grassland” was high for all combinations of datasets (e.g.
UA of “heathland and scrubland” 52% and PA of “grasslands” 41% when
using the three datasets, Appendix A).

The class “cropland” occupied the largest extent, and thus had a larger
number of inconsistencies. For instance, some croplands were classified

0.90

.85 I I
0.80 ]:

0.75

0.87 0.84 0.83 0.86 0.79 0.73 0.77
0.70

S1&S2&NDIs  S1&S2 S2&NDIs S1&NDIs NDIs S1 S2

Figure 3. Overall accuracies of individual and combined datasets. Error bars
indicate the standard deviation at 95% confidence interval.

GSW & SRTM derivatives
'
Potential
Wetland
Mask

Post-classification

Figure 2. Classification workflow. S1 and S2 are the Sentinel-1 and Sentinel-2 image collections, out of which the different multitemporal metrics are calculated.
During the post-classification phase we removed systematic errors using the PWM and added 3 new wetland classes using knowledge-based rules. The Potential
Wetland Mask was generated out of the Global Surface Water (GSW) layer and SRTM digital elevation model derivatives.
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Table 1. Number of hectares per class with each combination of multiple datasets before post-classification processing.

S1&S2&NDI (ha) S1 & S2 (ha) S2 & NDI (ha) S1 & NDI (ha)

Bare soil 15,749 18,642 7,714 15,104
Permanent Water 77,972 74,165 78,672 75,124
Built-up 30,782 30,440 54,033 32,955
Marshlands 30,803 22,848 25,732 41,794
Intermittent water 7,636 15,980 11,563 6999
Deciduous forest 32,144 33,859 30,388 30,364
Coniferous forest 12,771 17,674 13,879 13,858
Cropland 256,310 246,606 260,065 262,866
Grassland 28,378 26,792 35,259 27,426
Heathland and scrubland 105,883 111,420 81,121 91,935

as “heathland and scrubland” and others as “bare Soil”. Many of them
correspond to rather dry areas with high content in salt that are not
actively farmed (Figure 4 A and B). Other croplands showed higher fre-
quencies of inundation and were thus misclassified as “marshlands”
(Figure 4 C and D). These were very localized cases easy to correct
manually. The area shown in Figure 4 C and D actually corresponds to the
former Maliqui freshwater marsh, recently drained and now used for
agriculture.

3.2. Post-classification processing

Post-classification processing was applied only to the results of the
combination of S1, S2 and NDIs datasets. Using knowledge-based criteria
we incorporated three classes: “riverbanks”, “riverine scrubs” and

“dunes” increasing the wetland-related classes from 3 to 6 (Figure 5, and
supplementary file Albania PWA_LULC_2020.tif). This generated an
inevitable trade-off between thematic resolution and classification ac-
curacy, and some errors were introduced. For instance, a few bare soil
areas of industrial use (e.g. ports or salt pans) were classified as “dunes”
or “riverbanks”.

The accuracy analysis with independent samples returned an overall
accuracy of 82%. The detailed accuracy matrix (Appendix A) shows that
most conflicting classes were “bare soil” and “riverine scrubs” that were
often mixed up with “heathland and scrub”. In addition, “heathland and
scrub” was sometimes misclassified as “cropland”, and “marshland” was
sometimes confused with “intermittent water bodies”.

Because the aim of this study is to apply the methodology at national
scale, we compared our results with the last inventory of Albanian

e
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Figure 4. “Cropland” misclassified as “bare soil” and “heathland and scrub” (A and B) and as “marshlands” (C and D). “A” shows an RGB composite of NDBI, NDVI and
NDWI. Red areas represent high NDBI values. “C” shows a Sentinel-1 RGB composite of percentiles 99, 50 and 05 of a former marshland, now used for agriculture. “B”

and “D” show the classification results of “A” and “C” respectively.
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Figure 5. Map of potential wetlands (left) and map with the 13 final classes, result of the post-classification (right). The map of potential wetlands indicates the
probability of each pixel of being a wetland according to morphological criteria. Only areas above a histogram-based threshold (Otsu, 1979) were mapped.

wetlands. It was carried out in 2003 using field information and satellite
and aerial image interpretation (Marieta et al., 2003). Out of 694 in-
ventoried wetlands, we eliminated 18 that we couldn't find through vi-
sual inspection of current imagery and are assumed to have disappeared.
Fourteen of them were artificial water reservoirs, three marshes and one
lake. For the remaining 676 wetlands we analyzed their correspondence
with our results. The PWM excluded 99 wetlands. Thirty-three of those
were small artificial water reservoirs, and 54 were very small glacial
lakes (circa 1 ha). All the remaining 577 inventoried wetlands included
within the PWM were classified as one of our 6 wetland classes.

4. Discussion
4.1. Impact of the different datasets on the mapping accuracy

Fusing the datasets from different sensors (Sentinel-1 and Sentinel-2)
and the different indices (NDBI, NDVI, NDWI), provided the highest ac-
curacies (Figure 3), in agreement with other studies (Blaes et al., 2005;
Brisco and Brown, 1995; Chatziantoniou et al., 2017; Stefanski et al.,
2014; Waske, 2014; White et al., 2017). SAR signals are sensitive to
structure and biomass, dielectric properties of vegetation and soil
(inundation patterns) and roughness (White et al., 2017, 2015). This
makes SAR data essential to distinguish certain land cover classes such as
“uilt-up” and “bare soil”, or classes with different levels of moisture and
inundation such as “intermittent water bodies” (Figure 6). Other studies
using multitemporal metrics have reported high accuracies using only
optical data (Inglada et al., 2017; Mack et al., 2017; Pflugmacher et al.,

2019), but they only have one or two classes for wetlands, and therefore
very high accuracies in their class “water”. More recent studies reported
high accuracies in wetlands when combining Sentinel-1 and 2 metrics,
but only after excluding highly vegetated wetlands and for a relatively
smaller area (Slagter et al., 2020).

Despite the fact that the NDIs were calculated from the same Sentinel-
2 images, when combining both NDIs and S2 dataset, the accuracy
increased significantly with respect to using only the S2 dataset. The
NDIs dataset contains information on the temporal variation of physical
and biological characteristics of the land cover (e.g. maximum inunda-
tion, vegetation peak, and minimum inundation and vegetation), while
the S2 datasets contains only spectral information. The combination
S2&NDIs even approached the performance accuracy levels of the com-
bination S2&S1. This highlights on the importance of the temporal
dimension when mapping dynamic cover types.

“Cropland” is also a very dynamic class due to management practices
that are not constant across time nor space, making this class prone to
errors. In our case, this caused a high rate of omission errors (i.e.
“cropland” classified as something else, Figure 4 C and D). For instance,
some croplands are harvested once, others twice (e.g. winter wheat) or
not at all (i.e. fallow land and permanent crops), and other times are used
for temporary grasslands, increasing the error rate (Mack et al., 2017;
Stefanski et al., 2014). Systematic and standardized sampling campaigns
such as the ones carried out at EU level within the LUCAS (Land
Use-Cover Area frame Survey) project can be used to produce more ac-
curate classifications including crop types (Mack et al., 2017; Pflug-
macher et al., 2019). Unfortunately, such datasets are currently not
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Figure 6. From left to right, an example of the datasets S2, NDIs, S1 and result of classification. NDIs and the S1 metrics allow to separate the parts of the wetland that

are permanently and temporarily flooded.

available for Albania. It would be possible to use cadastral information to
leave out areas used for agriculture and eliminate these uncertainties.
However, many agricultural areas act as habitat for wetland species when
the natural wetlands are dried out or disturbed, and should be included in
wetland mapping activities (Czech and Parsons, 2002). Besides, for an
integrated management that considers the water-food-and energy nexus
it is important to include agricultural areas, whether they are in use or
not (fallow).

Yearly water level fluctuations are common in artificial wetlands used
as water reservoirs. These water bodies are often classified as one single
class of permanent water, whereas they are composed of areas that are
either permanently or temporarily inundated. The use of multitemporal
statistics allowed us to separate these two categories (Figure 6). Mapping
the intermittent water bodies is especially important in the case of water
reservoirs. These areas are often steep and local mountainous vegetation
cannot grow there due to the flood recurrence. This makes these areas
prone to erosion, increasing the sediment deposition rate in the water
reservoir and thus decreasing its life span. Mapping the water spread area
(i.e. intermittent water) have been used before in sedimentation models
to predict the life span of the dam (Foteh et al., 2018).

4.2. Post-classification processing

Often, land managers need higher accuracies and thematic resolu-
tions, especially for quantitative analyses (Chatziantoniou et al., 2017;
Manandhar et al., 2009). Using knowledge-based rules based on spatial,
environmental, geomorphologic or ecological criteria can improve ac-
curacies and the separability of classes that are spectrally similar but
ecologically very different (Chatziantoniou et al., 2017; Manandhar
et al., 2009). For instance, the mapping exercise of Pflugmacher et al.
(2019) was carried out at continental scale. This implied mapping the
same land cover types across climatic regions, where the same land cover
type can display different spatiotemporal patterns (e.g. boreal coniferous
forests vs. Mediterranean coniferous forests). To account for this, they
implemented auxiliary variables that exploited the relationship between
climate, topography and vegetation (precipitation, temperature, and
latitude and longitude). The addition of these variables had the highest
effect on model performance, higher even than adding other temporal
metrics. Their results show the relevance of adding environmental in-
formation rather than just more remotely sensed data. The
knowledge-based rules we set were proximity values based on theoretical
considerations and observations. Their addition increased the thematic
resolution, but also introduced some classification errors. This is some-
thing to be expected and good knowledge of the area is necessary to
balance the trade-off between thematic resolution and classification ac-
curacy (Knight et al., 2013). Knowledge-based rules require ecological
rather than remote sensing expertise and are specific for each case study

(Perennou et al., 2018). Thus, they should be modified according to the
needs and conditions of other environments when replicating the
methodology somewhere else. This, in turn, could pose an issue of lack of
standardization. Regardless, our results provide supporting evidence of
the benefits of including ancillary information based on logic and expert
knowledge in mapping activities (Chatziantoniou et al., 2017; Long and
Skewes, 1996; Manandhar et al., 2009), so that mapping products can be
better suited for decision making. There is still a number of wetland
classes that could not be included in this exercise due to lack of better
training information (e.g. peatbogs).

The comparison of our final product with the 2003 inventory revealed
that our workflow missed 99 of the 676 wetlands inventoried. Almost
half of these were artificially created water reservoirs located in areas
with a topography unsuitable to store water without building a dam, and
therefore not regarded as potential wetland areas. However, there were
54 small glacial lakes (circa 1 ha) that were also masked out. Practically,
all of these omission errors were initially classified as some wetland type
before the PWM was applied. Omission errors can be avoided by applying
a more conservative manual threshold to the PWM, but that can increase
the number of errors related to the terrain artifacts. Trade-offs between
omission and commission errors are often unavoidable and a histogram-
based thresholding method is still recommended. Other types of wetlands
such as raised peatbogs could be as well excluded when located on a
slope.

5. Conclusions

The demanding monitoring and reporting requirements of the Ramsar
Convention on Wetlands and the Sustainable Development Goals create a
need for countries to improve their capabilities for wetland mapping,
inventorying, monitoring and assessment. Landscape temporal dynamics
are traits that have often hampered mapping activities, and in conse-
quence delayed spatially-based decisions. Using a combination of mul-
titemporal SAR and multispectral metrics we can use such traits to
distinguish spectrally similar but ecologically different cover types.
Including additional knowledge-based rules removes artifacts and in-
creases the thematic resolution. Cloud computing platforms can facilitate
the handling of large amounts of spatial data and allow to deliver ready to
use products in an operational way.
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Appendix A. Error matrix of the S1 & S2 & NDI classification after post-classification

Bare Permanent Built-up Marshlands Intermitent Deciduous Coniferous Cropland Grassland Heath & Dunes Riverbanks Riverine UA

Soil  water water scrub scrubs
Bare Soil 13 0 2 0 0 2 0 5 2 6 0 0 0 43%
Permanent water 0 76 0 1 0 0 0 0 0 0 0 0 0 99%
Built-up 0 0 19 0 0 3 0 2 0 4 0 2 0 63%
Marshland 0 0 0 16 6 4 2 0 1 0 0 1 0 53%
Intermittent water. 0 2 0 0 27 0 0 0 0 0 1 0 0 90%
Deciduous 0 0 0 0 0 30 0 1 0 1 0 0 0 94%
Coniferous 0 0 0 1 0 0 27 0 0 1 0 0 1 90%
Cropland 0 0 1 0 0 2 0 91 4 0 0 0 2 91%
Grassland 0 0 0 0 0 2 0 4 23 1 0 0 0 77%
Heath & scrub 1 0 3 0 0 1 0 16 1 22 0 0 0 50%
Dunes 2 1 0 0 0 0 1 1 0 0 25 0 0 83%
Riverbanks 1 0 0 0 1 1 0 0 0 1 0 26 0 87%
Riverine scrubs 0 0 4 0 0 3 0 4 2 5} 0 2 14 41%
PA 59% 99% 66% 90% 55% 62% 88% 90% 56% 63% 83%  72% 71%
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