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ABSTRACT

Mapping and assessment of water-related ecosystems is a challenging task that requires advanced processing
techniques with clear rules and standards in terminology and definition of class features. These ecosystems are
hydrologically and ecologically connected at catchment level and co-exist within a human context. The SWOS
(Satellite based Wetland Observation Service - Horizon 2020) national service case for mapping and assessing
the 10 Greek Ramsar wetland sites and their catchment areas is built on the requirements of the Ramsar
Convention on Wetlands and of the Aichi Biodiversity Targets of the Strategic Plan for Biodiversity 2011-2020.
It contributes directly to Sustainable Development Goal (SDG) Global Indicator 6.6.1 “Sub-Indicator 1 — spatial
extent of water-related ecosystems”. An Object-Based Image Analysis (OBIA) approach was adopted using
Sentinel-2 satellite images for the year 2017, to discriminate 31 classes (wetland and non-wetland) over an area
of 2,015,591 ha. The classification model was further adjusted to Landsat 5 TM imagery of previous years
(1986-1987) in order to extract possible changes in the spatial extent of water-related ecosystems. The Mapping
and Assessment of Ecosystems and their Services (MAES) ecosystem typology, as this was enhanced within
SWOS, was applied. Results demonstrate the effectiveness of the employed classification model, techniques and
rules, in obtaining highly accurate (over 90%) mapping results on the spatial extent of water-related ecosystems.
Also, they highlight the contribution of Earth Observation (EO) and geospatial analysis in assessments of area-
based changes and their causes, as well as in identification of conservation and management priorities (i.e. areas
for restoration). In addition, to address the need to strengthen national capacities, the established SWOS service
lines have been used as a contribution to the user community.

1. Introduction

Biological Diversity, by 2020, the protection and restoration of water-re-
lated ecosystems have been included in the SDG target 6.6. In particular, the

Water-related ecosystems play a critical role in the water cycle.
Amongst them, wetland ecosystems are those in which water is the
main component driving their functions and the services they provide.
According to the Ramsar Convention, almost all of the world's con-
sumption of freshwater is drawn either directly or indirectly from
wetlands. They also provide services such as food, fiber and timber
products, transport, recreation, and waste removal (Ramsar Convention
Secretariat, 2010). Moreover, wetland ecosystems are considered es-
sential in achieving several Sustainable Development Goals (SDGs)
(Ramsar Convention Secretariat, 2018).

In accordance with the Aichi Biodiversity Targets of the Convention on
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proposed SDG Indicator 6.6.1 monitors change in the extent of water-re-
lated ecosystems over time, focusing in freshwater wetland ecosystems
(vegetated wetlands, rivers, lakes, aquifers and artificial water bodies).
Further options are suggested to expand it in non-freshwater ecosystems
(i.e. mangroves, estuaries) due to relationships that may exist (UN
Environment-Water, 2018). A broader conception of wetland ecosystems is
adopted by the Ramsar Convention, which under the collective term
“wetland ecosystems”, defines a wide variety of water-related habitats, such
as marshes, peatlands, floodplains, rivers and lakes, regardless of their
depth, coastal areas and marine areas no deeper than six meters at low tide,
as well as human-made wetlands.
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Fig. 1. Pilot areas (include Ramsar sites and their catchments)/Ramsar site codes: (a) Eastern Macedonia and Thrace National Park/GR55 (Nestos Delta) & GR56
(Vistonida Lagoon); (b) Axios, Loudias, Aliakmon Deltas/GR59; (¢) Transboundary Prespa Lakes/GR60, AL2151, MK726; (d) Evros Delta/GR54; (e) Volvi and
Koronia Lakes/GR57; (f) Kerkini Lake/GR58; (g) Kotychi Lagoon/GR63; (h) Messolonghi Lagoon/GR62; (i) Amvrakikos Gulf/GR61. The red polygon denotes the
Ramsar site. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

At European and regional level, the mapping of wetland ecosystems'
spatial extent is a priority under various European and regional policies,
treaties and initiatives. Notable are the EU Biodiversity Strategy to
2020, the EU Habitat and Birds Directives, the EU Water Framework
Directive (WFD), the EU Initiative on Mapping and Assessment of
Ecosystems and their Services (MAES), the EU Strategy on Green

Infrastructure and the Mediterranean Wetlands Initiative. Still, due to
many bottlenecks driven mainly by lack of standardization and
common consensus on wetland ecosystem types, wetlands are under-
represented in size and diversity, affecting conservation and restoration
efforts.

Within Earth Observation (EO) technology, mapping of wetland
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ecosystems' spatial extent has been proven a challenging task (Dronova
et al., 2012). It is very well-suited in identifying changes, degradation,
and responses to restoration, because of its synoptic repetitive coverage
over the same area at various spatial and temporal scales (Perennou
et al., 2018; Ballanti et al., 2017; Singh et al., 2017; Sanchez-Hernandez
et al., 2007). Nevertheless, the overall success and practical utility of
remote sensing-based wetland assessments have been contingent on the
accuracy of image interpretation and feature extraction (Dronova,
2015). The spatial structure and composition of wetland habitats are
complex with not easily distinguishable boundaries, which leads to
within-class spectral variability and spectral similarities between
classes as well (Keramitsoglou et al., 2015). The advent of newly
launched satellites with enhanced spatial and/or spectral resolutions,
along with the development of efficient algorithms can address the
above challenges. In particular, Object-based Image Analysis (OBIA)
offers a promising framework to address these constraints in hetero-
geneous landscapes and to facilitate repeated monitoring of wetland
ecosystem surface properties and configuration (Dronova, 2015; Wang
et al.,, 2004). Guo et al. (2017) and Dronova (2015) reviewed many
studies that incorporated OBIA for wetland classification with various
EO dataset and variables. The outcomes showed the effectiveness of
OBIA, particularly via a hierarchical framework. When compared to
traditional pixel-based techniques, OBIA proved superior because of the
incorporation of spectral and spatio-contextual information (Blaschke,
2010; Ceccarelli et al., 2013). Further, Ma et al. (2017) reviewed many
studies that applied OBIA for land-cover classification, and they found
that most of the study areas were < 300 ha (95.6%). The above authors
suggest the need for larger study areas in future research, thereby
verifying the applicability of the object-based image classification
technique over wider areas. The main objective of the current study was
the mapping and assessment of the 10 Greek Ramsar wetland sites and
their catchments as a contribution to knowledge for SDG 6.6.1 indicator
assessment and to the update of Ramsar Information Sheets. Particu-
larly we aimed:

- to generate a hierarchical object-based image analysis model tai-
lored to wetland ecosystems and to identify limitations and rules in
mapping their spatial extent, following the MAES ecosystem no-
menclature as modified within SWOS;

- to estimate the spatial extent of wetland ecosystems of Greek
Ramsar sites over their catchment areas and to assess potential
changes and their causes.

2. Material and methods
2.1. Study sites

The study was carried out in the 10 Greek Ramsar sites and their
catchment areas. Two of them comprise the National Park of Eastern
Macedonia and Thrace, and along with their catchment areas they were
treated as one continuous area. It is noted that Greek Ramsar site Prespa
Lakes (GR 60) is part of the transboundary ecosystem shared by Greece,
Albania and North Macedonia; as a contribution to transboundary in-
tegrated management of the area, the mapping area was extended in
these countries too. The analysis was carried out in a total area of
2,015,091 ha (Fig. 1). In this work only mapping results for the Greek
territory are presented (1,858,666 ha).

2.2. Datasets and pre-processing

Sentinel 2A-MSI standard level-1C (L1C) products were used,
available from the Copernicus Open Access Hub website. They are
distributed as ortho-rectified and UTM (Universal Transverse Mercator)
geocoded Top-of-Atmosphere (TOA) reflectance images. The spatial
resolution of the L1C products is 10 m, 20 m or 60 m depending on the
band (Table 1) (Agency, 2018; Drusch et al., 2012). 42 Sentinel -2A MSI
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Table 1
Spectral and spatial information per band of Sentinel 2A-MSI sensor (Agency,
2018) and Landsat 5TM (USGS, 2017).

Sentinel 2_MSI bands Central wavelength (um) Resolution (m)

Band 1 - coastal aerosol 0.443 60
Band 2 - blue 0.490 10
Band 3 - green 0.560 10
Band 4 - red 0.665 10
Band 5 - vegetation red edge 0.705 20
Band 6 - vegetation red edge 0.740 20
Band 7 - vegetation red edge 0.783 20
Band 8 - NIR 0.842 10
Band 8A - vegetation red edge 0.865 20
Band 9 - water vapour 0.945 60
Band 10 - SWIR - cirrus 1.375 60
Band 11 - SWIR 1.610 20
Band 12 - SWIR 2.190 20

Landsat 5 TM bands Central wavelength (um) Resolution (m)

Band 1 - blue 0.45-0.52 30
Band 2 - green 0.52-0.60 30
Band 3 - red 0.63-0.69 30
Band 4 - NIR 0.76-0.90 30
Band 5 - SWIR 1.55-1.75 30
Band 6 - thermal 10.40-12.50 120
Band 7 - SWIR 2.08-2.35 30

(S2) tiles were acquired for 2016-2017. Of these, 21 were acquired for
the wet season (March to May) and 21 for the dry season (June to
August) (Table 2). Cloud cover was under < 15%, thus cloud masking
was not required.

In addition, Landsat 5 TM Level 1TP products were employed,
provided by the USGS, in order to map the pilot areas in the past,
covering the longest possible period. These products are distributed as
radiometrically calibrated and ortho-rectified using ground control
points and digital elevation model data (Table 1) (USGS, 2017). In
particular, 34 Landsat 5 TM (L5) images of 1985-86 were employed in
this analysis, 17 for each season. The acquisition dates were carefully
chosen so as to be relevant with the acquisition dates of the appropriate
Sentinel 2A images per site. However, minor exceptions were permitted
in some cases due to lack of available imagery. Similarly, the cloud
cover was below < 10% with no cloud masking required over the se-
lected L5 tiles.

Table 2
Acquisition dates of the imagery used per sensor and pilot area.

Pilot area name (Ramsar site and its Sentinel 2A-MSI Landsat 5TM

catchment)/Ramsar site codes (10 m) (30 m)
(a) Eastern Macedonia and Thrace National 21-Apr-16 18-May-87
Park/GR55 & GR56 10-Jul-16 22-May-86
19-Aug-86
10-Aug-86
(b) Axios, Loudias, Aliakmon Delta/GR59 04-Apr-16 24-Apr-85
02-Aug-16 17-Aug-86
(c) Transboundary Prespa Lakes/GR60, 17-Apr-16 02-Apr-86
AL2151, MK726 15-Aug-16 24-Aug-86
(d) Evros Delta/GR54 04-Mar-17 16-Feb-89
26-Aug-17 24-Aug-88
(e) Volvi and Koronia Lakes/GR57 30-Mar-17 04-Apr-86
12-Aug-17 10-Aug-86
(f) Kerkini Lake/GR58 30-Mar-17 24-Apr-85
12-Aug-17 17-Aug-86
(g) Kotychi Lagoon/GR63 09-Apr-17 07-Mar-85
27-Aug-17 17-Aug-86
(h) Messolonghi Lagoons/GR62 09-Apr-17 07-Mar-85
27-Aug-17 17-Aug-86
(i) Amvrakikos Gulf/GR61 09-Apr-17 02-Apr-86

27-Aug-17 23-Jul-86
Total number of images 42 tiles 34 tiles
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All satellite images were atmospherically corrected using the Semi-
Automatic Classification Plugin (SCP) embedded in QGIS software
(Congedo, 2016), which applies a dark object subtraction algorithm
(Chavez, 1988), converting the TOA values into surface reflectance
values. In the case of S2, for each tile, 10 out of 13 bands (b2-b8A and
b11-b12) were stacked into a single file resampled to 10 m spatial re-
solution. In the end, two single 10-band layers, one for wet and one for
dry season were generated, per pilot area. The same procedure was
applied in the L5 images, where for each tile, the appropriate bands
(b1-b5 and b7) were employed resulting in single files of 30 m spatial
resolution. In the end, two single 6-band layers, one per season, were
generated for each pilot area.

The Corine Landcover/Landuse (CLC) national datasets of 2012 and
2000 were used as additional thematic layers within the classification
model, in order to discriminate “Croplands” (CLC codes of Level 3:
211,212,221,222,223,231,241,242 and 244) from “Urban” classes (CLC
codes Level 1: 1), and from “Rice fields” classes (CLC code: 213). Even
though there is a spatial and time deviation between the satellite
imagery employed and the CLC layers, due to the lack of other relevant
spatial datasets, the CLC 2012 was employed for the recent mapping
(2016-2017) while the CLC 2000 was used for the past one
(1986-1987). This was decided because croplands, which are highly
dynamic, as each crop may be in a different state of development,
present spectral similarities with other natural land cover categories
that leads to limitations of mapping accuracies (Ozdogan et al., 2010).
Similarly, challenges in discriminating accurately the urban surfaces
with remote sensing exist, due to high spectral and spatial variability of
urban surface materials (Powell et al., 2007). Therefore, a visual eva-
luation in terms of spatial coherence, was applied in the CLC datasets
and further delineation was employed where needed.

2.3. Wetland spatial extent mapping approach

2.3.1. Nomenclature

Within SWOS, wetland ecosystems are considered connected with
their broader landscapes in hydrological and ecological terms, and
within a human context. As such, wetland ecosystems can encompass
their larger surroundings, both waterscapes and landscapes, including
even the non-wet habitats such as sand dune systems and beaches along
coastal wetlands, or the deep water habitats of lakes, underground
aquifers, and even the degraded wetlands which have significantly lost
their naturalness but potentially could be restored.

The EU MAES nomenclature (https://biodiversity.europa.eu/maes/
typology-of-ecosystems), as modified and enhanced within SWOS
(Fitoka et al., 2017), was followed in this analysis. The classes applic-
able at the pilot areas (Table 2) were selected prior to image analysis,
based on existing knowledge and preliminary inspection of the avail-
able images as well as of Google Earth imagery. Based on established
cross walks (Fitoka et al., 2017) between the modified MAES and the
CLC, second level mapping products were generated with the matched
CLC classes (Table 3).

2.3.2. Hierarchical object-based image analysis

A hierarchical object-oriented approach was adopted in order to
take into account the need for “nested” spatial configuration of wetland
habitats (Dronova, 2015) and to have the flexibility required in wetland
ecosystem mapping (Grenier et al., 2007).

For each pilot area, two single 10-band S2 images (recent time:
2016-2017) or 6-band L5 TM images (past time 1986-1987), one per
season (wet and dry), were segmented by applying the multi-resolution
segmentation algorithm embedded in the eCognition Developer 8.7
software (Trimble Inc.). In order to generate meaningful real-world
objects of interest (Castilla and Hay, 2008), several user-defined para-
meters were tested through visual inspection, such as scale, colour/
shape, smoothness/compactness. In particular, the scale parameter,
which may directly affect subsequent classification (Smith, 2010), was
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iteratively assessed in order to control whether small patches of specific
cover (i.e. water, bare land, grasses) should be embedded in coarser
classes (i.e. coastal marshes, forests) or not. In the end, two segmen-
tation levels were selected (Table 4).

A superset of 78 object features was compiled, that could potentially
be used to discriminate the wide range of classes in all pilot areas, in-
cluding spectral, geometric and contextual variables (Table 5). In par-
ticular, spectral information of both seasons was used for the calcula-
tion of spectral indices, such as the Normalized Difference Vegetation
Index — NDVI (Townshend and Justice, 1986), the Normalized Differ-
ence Water Index — NDWI (McFeeters, 1996), and the Normalized
Difference Red Edge Index — NDRE (only for the S2 case) (Barnes et al.,
2000).

A top-down process was followed, so as to initially identify the
easiest or more general classes (parent classes) (i.e. water surface, bare
land, forest, permanently flooded marshes, low stature herbaceous) and
then proceed with the classification of the detailed classes (child
classes) to reach the 3rd or even the 4th level of MAES nomenclature
(Table 3). The classification approach is a combination of user-defined
rules, Classification And Regression Tree - CART Decision tree algo-
rithm, and context-based classification. Particularly, CART was utilized
alongside as a support tool offering guidance for classes that presented
spectral similarities and were difficult to define. CART is a well-known
decision tree classification algorithm which uses a multi-stage approach
to the problem of label assignment (Breiman et al., 1984). It is con-
sidered to be a chain of simple decisions based on the results of iterative
tests rather than a single complex decision (Pal and Mather, 2003). As a
supervised-classifier, it requires labeled training data, thus training
samples were carefully chosen, based on existing knowledge, ortho-
photos and Google Earth. The final result of the CART analysis, which
naturally extends to a rule-based classification scheme, was manually
integrated within the ruleset in order to be reasonably robust and
transferable.

Subsequently, a context-based classification was applied, in order to
reach classes, such as river banks, riparian broadleaved forest, wet
grassland (Fig. 2), that could be effectively isolated and classified only
through comparison to others. Particularly, user-defined classification
rules were applied based on contextual features as described in Table 5.
The use of contextual information helped to progressively quantify the
relationship between an individual object and its neighbor ones, be-
cause as more objects are classified, more context information is
available to classify other, less easily defined (O'Neil-Dunne and
Pelletier, 2011).

The hierarchical image classification flow (Fig. 2) was generated in
the pilot area of the National park of Eastern Macedonia and Thrace and
its catchment area, based on the correspondent S2 dataset, and formed
the fundamental set of steps that also applied to the other pilot areas.
Since the objective of this analysis was the generation of mapping
products of high accuracy and not the transferability of the ruleset per
se, the rules behind each feature selected for the discrimination of each
class, were evaluated prior to their application in each pilot area.

At the first segmentation level (coarse-scaled), the “Water surfaces”
were easily defined based on the Normalized Difference Water Index —
NDWI, calculated for both seasons, along with the Brightness index. It
should be mentioned that in order for an object to be labeled as “Water
surfaces”, it had to represent a water surface in both seasons/images.
Accordingly, the “Croplands”, “Urban” and “Rice fields” were derived
from CLC 2012.

At the second segmentation level (fine-scaled), the features that
initially were employed to define the “Water surfaces”, were re-applied
in order to isolate smaller-scaled objects that belonged to the specific
class. Geometry features, such as the size of the object under in-
vestigation or its shape, were further used to define water-related
classes of the fourth level of the classification scheme. In particular,
“Ponds” were discriminated based on the size of the object classified as
“Water surfaces” where a general rule exists (covered area below 8 ha),
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Classes applicable in pilot areas according to the MAES nomenclature and the CLC as these have been enhanced within SWOS (“/” denotes attributes that further

distinguishes some MAES classes).

MAES classes enhanced based on EUNIS & Ramsar types

CLC classes enhanced based on Ramsar types

1 Urban

2 Croplands

2.1.3.1 Rice fields

3.1 Broadleaved forest

3.1.1 Riparian and fluvial broadleaved forest
3.2 Coniferous forest

3.2.1 Riparian and fluvial coniferous forest
4.1 Dry grasslands

4.3 Wet grasslands

5.1.1.4 Riverine and fen scrubs

5.2.1 Sclerophyllous vegetation/coastal dune scrub
6.2 Bare soil, rock, perennial snow & ice
6.2.1.1 Beaches

6.2.1.2 Coastal and fluvial dunes without vegetation

6.2.1.3 River banks

7.1.1.1 Inland freshwater marshes without reeds (small ponds below 8 ha
might be included)/permanently flooded

7.1.1.1 Inland freshwater marshes without reeds (small ponds below 8 ha
might be included)/seasonally flooded

7.1.1.2 Inland freshwater marshes with reeds (small ponds below 8 ha
might be included)

8.1.1 Salt marshes without reeds/permanently flooded

8.1.1 Salt marshes without reeds/permanently flooded/seasonally flooded

8.1.2 Salt marshes with reeds

8.2.1 Coastal lagoons

8.2.2 River estuaries and estuarine waters of deltas

8.3.1 Coastal saltpans (highly artificial salinas)

8.4.1 Intertidal flats

9.1.1.1 Permanent Interconnected running water courses

9.1.1.3 Highly modified natural water courses and canals

9.2.1.1 Natural permanent water bodies (over 8 ha)

9.2.2.1 Ponds and lakes with completely man-made structure (generally
below 8 ha)

9.2.2.4 Other reservoirs/barrages/dams/impoundments etc. (generally
over 8 ha)

10.1.1 Marine waters less than six meters deep at low tide

1 Artificial surfaces

2 Agricultural areas

2.1.3 Rice fields

3.1.1 Broad-leaved forest

3.1.1.2 Wet forests including riparian

3.1.2 Coniferous forest

3.1.2 Coniferous forest

3.2.1 Natural grassland

4.1.1.7 Seasonal/intermittent freshwater marshes/pools on inorganic soils, includes sloughs,
potholes, seasonally flooded meadows, sedge marshes

3.2.4.1 Shrub-dominated wetlands, shrub swamps, shrub-dominated freshwater marshes, shrub carr,
alder thicket on inorganic soils

3.2.3 Sclerophyllous vegetation

3.3 Open spaces with little or no vegetation

3.3.1.1 Sand, shingle or pebble shores, includes sand bars, spits and sandy islets, includes dune
systems and humid dune slacks

3.3.1.1 Sand, shingle or pebble shores, includes sand bars, spits and sandy islets, includes dune
systems and humid dune slacks

5.1.1.2 Permanent rivers/streams/creeks, includes waterfalls

4.1.1.6 Permanent freshwater marshes/pools, ponds (below 8 ha), marshes and swamps on
inorganic soils, with emergent vegetation water-logged for at least most of the growing season
4.1.1.7 Seasonal/intermittent freshwater marshes/pools on inorganic soils, includes sloughs,
potholes, seasonally flooded meadows, sedge marshes

4.1.1.1 Reedbeds and high helophytes

4.2.1 Salt marshes

4.2.1 Salt marshes

4.2.1 Salt marshes

5.2.1.1 Coastal brackish/saline lagoons, brackish to saline lagoons with at least one relatively
narrow connection to the sea

5.2.2 Estuaries

4.2.2 Salines

4.2.3.1 Intertidal mud, sand or salt flats

5.1.1.2 Permanent rivers/streams/creeks, includes waterfalls

5.1.1.4 Canals and drainage channels, ditches

5.1.2.1 Permanent freshwater lakes (over 8 ha), includes large oxbow lakes

5.1.2.10 Ponds, includes farm ponds, stock ponds, small tanks, (generally below 8 ha)

5.1.2.11 Water storage areas, reservoirs/barrages/dams/impoundments (generally over 8 ha)

5.2.3.1 Permanent shallow marine waters in most cases less than six meters deep at low tide,
includes sea bays and straits

Table 4

User-defined segmentation parameters per sensor and segmentation level.

Segmentation levels Sentinel 2-MSI

Landsat 5 TM

Level 1 (coarse)
Thematic layer used: CLC layer
Scale: 150
Shape: 0.3
Compactness: 0.7

Level 2 (fine)
Thematic layer used: None
Scale: 60
Shape: 0.7
Compactness: 0.5

Image layers weighted: All spectral information images of both seasons

Image layers weighted: All spectral information images of both seasons

Image layers weighted: All spectral information images of both seasons
Thematic layer used: CLC layer

Scale: 400

Shape: 0.1

Compactness: 0.5

Image layers weighted: All spectral information images of both seasons
Thematic layer used: None

Scale: 100

Shape: 0.3

Compactness: 0.5

while extent features (i.e. length, length/width) and shape features (i.e.
roundness) were used for the discrimination of the “Permanent inter-
connected running waters”.

Furthermore, certain contextual features, such as “distance from”,
“border to” and “relative border to”, were chosen for the re-classifica-
tion of objects next to objects or spatially relevant to objects already
classified in wetland classes (Fig. 2). For example, the “Riparian
broadleaved” class was defined by objects already -classified as
“Broadleaved forest” that were next to objects of certain wetland-re-
lated classes (i.e. rivers, river banks). The distance from “Marine water”

was used in order to differentiate the inland marshes from the coastal
salt marshes.

As previously mentioned, the classification ruleset was adjusted in
each pilot area, since the aim of the analysis was driven by the user
needs for highly accurate products. Particularly, three different cases of
adjustments were made. The first one related to those classes (parent
and child) that their spectral-based features were constant in all pilots,
although their respective range of values, set in one pilot, was re-ad-
justed for a better classification result in another pilot. Classes of this
case, are the “Water surfaces” (parent class) and its respective child
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List of object features divided into four categories according to eCognition ‘s categorization; (ds) and (ws) denote features derived from dry season and wet season

images, respectively.

Feature categories Features Description Number
of
features

Customized (Spectral indices) NDVI (ws, ds) NDVI = NIR—RED 7

NIR + RED
NDWI (ws, ds) NDWI — GREEN = RED
" GREEN + RED

NDRE (ws, ds) NDRE =

NIR — Re dEdge

NIR + Re dEdge

Ratio of NDWI (ds)/(ws)

Mean (for all image layers both ds and ws)
Brightness

Max. difference

Layer values (Spectral Features)

The mean value represents the mean brightness of an image object within a single band 42
Sum of mean values in all bands divided by the number of bands.
Minimum mean value of an object subtracted from its maximum value. The means of all

bands belonging to an object are compared with each other. Subsequently, the result is
divided by the brightness

Standard Deviation (for all image layers
both ds and ws)

Extent

Shape

CLC thematic layer

Relations to super objects

Relation to neighbor objects

Geometry

Thematic attributes
Class-related (Contextual features)

Area, Border length, Length/Width
Compactness, Roundness
Croplands, Rice fields, Urban
Existence to “Water Surfaces”
Border to, Relative border to features. These contextual features were applied to all spectral- 20

The standard deviation of all pixels which form an image object within a band

oW N W

based defined classes that further discriminated into detailed classes (total 8 classes).
Distance to feature. This was employed in order to discriminate the coastal from the inland
correspondent categories. (Fig. 2)

Total

78

classes (“Marine water”, “Coastal lagoon”, “Inland water”), the “Marsh
permanently flooded” (with and without reeds), the “Broadleaved
forest” and the “Intertidal flats”.

The second case related to classes that their selected spectral fea-
tures differed from pilot to pilot. Particularly, those that presented high
spectral similarities with others (i.e. Coniferous forest with
Sclerophyllous vegetation), or a class in one pilot differed from the
other, i.e. “Rivers” due to differences in water recharge volumes; “Dry
grassland” due to differences in vegetation coverage, when it was sparse
they were confused with the “Bare land” while in others they were
easily distinguished. Moreover, regarding the water-related classes, it
has been observed that the appropriate features had to be changed
when the number of water child classes was different between the pilot
sites (i.e. existence of rivers and lagoons and marine waters in one site
or existence of only one class in another one).

The third case of adjustments referred to the contextual-defined
classes, where the values of the respective feature were changed prior to
their application in each pilot. The lack of general contextual criteria is
reasonable while values of some ecologically driven parameters (i.e.
extent of riparian zone, extent of soil moisture) are site-specific and
require additional knowledge on climatic and topographic conditions.
To overcome this bottleneck, an iterative internal evaluation was un-
dertaken in order to define contextual classes per site, as was the case of
the distance next to “River” or “River bank” that “Riparian broadleaved
forest” extents.

Similarly, the “Marsh without reeds seasonally flooded” (coastal and
inland) class, which was difficult to identify in most sites, was isolated
based on contextual features which were adjusted at each pilot. This
class presented spectral differentiation between the two seasons, that
was fused with other classes. For the wet season, this class was spec-
trally similar to grasslands due to the fact that both are dominated by
low statute herbaceous vegetation (parent class), while for the dry
season it presents sparse vegetation, a situation that was spectrally
fused with “Bare land”. By applying the appropriate contextual fea-
tures, when objects defined as “Low stature herbaceous” and/or “Bare
land” were next to wetland classes, these were further classified as
“Marsh without reeds seasonally flooded”. Moreover, the lack of spec-
tral features possible to define the specific class, generated

discrimination issues between “Wet grassland” and “Dry grassland”. To
overcome these difficulties, expert-knowledge rules were applied which
suggested that permanently flooded marshes are usually followed by
seasonal flooded marshes which extent towards the upland side and
that wet grasslands are usually found next to water bodies (i.e. rivers,
lakes) where water fluctuations occur.

2.4. Thematic accuracy assessment

The accuracy assessment was applied in a sample area covering 66%
of the total mapped area including 5 out of the 10 Greek Ramsar sites
and all possible wetland classes. Since reference data for the previous
years (1986) were not available, the accuracy assessment was only
applied in the classification products of the recent dates (2016-2017). It
consisted of three fundamental steps: the determination of the appro-
priate sample size, the sampling design and the specification of the
appropriate measure of accuracy (Foody, 2002). Multinomial distribu-
tion was used to determine the sample size, since multiple classes
compose the final thematic products (Congalton and Green, 2009). The
total number of point-samples (1532 points) was derived by the Eq. (1)
(Table 6) introduced by Tortora (1978) (Table 7).

For the spatial distribution of the generated points, the stratified
random sampling was selected, so as to ensure that all classes, no
matter how small, would be included in the accuracy assessment.
Segments (from the fine-scaled level) that included the spatial located
point-samples, were used as a buffer-zone around each point. The ap-
propriate class was assigned to each point based on existing knowledge
and photointerpretation of ortho-rectified aerial photos (acquired on
2007-2009) and Google Earth (2012-present). The confusion matrix
method was used to derive all necessary accuracy measures.

2.5. Assessment of changes in wetland spatial extent

The assessment of changes in wetland spatial extent and their causes
covered a period of 30 years, the longest period with available histor-
ical images for the pilot areas. It was employed based on the second
level mapping products generated with the CLC classes (Table 3) for the
recent (2016-2017) and past years (1986-1987), by applying the Land
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Segmentation level 1 (coarse-scaled)

Segmentation level 2 (fine-scaled)

| saltpans

Natural
— permanent water
bodies (>8ha)
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running waters
(rivers)
Preprocessed Coastal salt
satellite imagery marsh
(wet & dry permanently
seasons) A flooded
Corine LULC ‘
layer Inland marsh
permanently
flooded
— Cropland
Riparian
Broadleaved
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N I Rice fields
Riparian
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—ianstiaces Riverine and fen
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Thematic-based defined Geometry-based defined C I-based defined
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Fig. 2. Image hierarchical classification flow. The links between the classes denote the relationship between them. The classes have been defined based on their
spectral characteristics (purple), geometry (grey) and with the employment of contextual features (yellow). Nevertheless, all child classes defined by contextual or
geometry features, inherited the particular rules by their respective parent classes. Certain categories that presented identical spectral characteristics and no con-
textual linkage, were isolated manually (green). “Croplands”, “Urban” and the “Rice fields” were identified by using the CLC thematic layers (orange). (For inter-

pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Mathematical equation for sample size calculation.
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1) N = 1B -]

11i is the proportion of a population in the ith class out of k classes that has the proportion closest to 50%

b? bi is the desired precision (e.g., 5%) for this class
B is the upper (a/k) x 100th percentile of the chi square (X 2) distribution with 1 degree of freedom
k is the number of classes

and Ecosystem Accounting — LEAC classification of land cover changes
in Land Cover Flows (LCF) (European Environment Agency, 2006)
(supplementary material).

A map-to-map comparison approach was selected (Singh, 1989) due
to spectral similarities that many wetland classes presented, particu-
larly those defined by contextual features or geometry characteristics.
Problems occurred by the mis-registration of the polygons boundaries
(different pixel value and/or misclassifications in one or both maps)
and resolved through a post-processing of the spatial overlay analysis
result (i.e. elimination of polygons under 0.3 ha).

3. Results - discussion
3.1. Hierarchical image classification model

The implementation of the hierarchical object-oriented classifica-
tion flow in the analysis of the S2 images, resulted in the discrimination
of 31 classes of the modified MAES typology, of which 24 corresponded
to wetland ecosystems. The analysis highlighted the need for seasonal
spectral information for the discrimination of several wetland classes
while the utility of geometric and contextual criteria was essential in
order to reach the detailed 3rd and 4th levels of the nomenclature
(Fig. 3).

A combination of NDWI and Brightness index ranges of values was
employed to discern the “Marine water” from the “Coastal lagoon”.
Nevertheless, some specific water-related classes were not possible to
be successfully isolated using spectral and/or contextual features. Thus,
the assignment of the class was applied manually based on existing
knowledge of the area i.e. “Reservoirs”. Different ranges of NDWI va-
lues (calculated for both seasons) were used for the classification of the
“Marshes (with and without reeds) permanently flooded”. Due to water
permanency throughout most of the year and due to the phenological
seasonal differences of the persistent emergent vegetation, the relevant
objects presented a special spectral differentiation.

Moreover, in the case of S2, the existence of available information
within the spectrum range of 0.705-0.865 um, for both seasons (wet
and dry), assisted in defining other classes which present seasonal dif-
ferences due to changes in vegetation phenology (such as the
“Broadleaved forest” and the “Low stature herbaceous”) or in water
level fluctuations (such as “Intertidal flats”). The mean values of SWIR
-1 and -2 bands (1.610-2.190 um) were used to define the “Coniferous
forest” class since the SWIR reflectance for coniferous is low compared
to the broadleaves (Rautiainen et al., 2018)

Both red-edge and SWIR bands from Sentinel-2 were important,
confirming that seasonal images can capture phenological differences
between the species (Persson et al., 2018). On the other side of the
spectrum range, the mean values of the Blue bands (0.490 um) formed
the basic features for the discrimination of the “Bare land” class. The
particular class presented less spectral variation in comparison with the

Table 7
Number of points used in the accuracy assessment procedure per pilot area.

vegetated ones. This is due to factors, such as soil texture, surface
roughness and organic matter, that affect soil reflectance acting over
less specific spectral bands (Govender et al., 2007). A similar approach
was adopted in the case of L5 imagery, where features from the spec-
trum ranges closest to the S2 were used.

3.2. Thematic accuracies

The Overall Accuracies (OA) showed that the classification flow
exhibited satisfactory results in terms of overall performance and kappa
coefficient (Table 8). Some errors were rather expected and to some
level were related with the bulk delimitation of the “Cropland” and
“Urban” from CLC2012 which did not temporarily coincide with the
image acquisition dates. Thus, possible croplands not covered by
CLC2012, were classified in most of the cases as “Dry grassland” or
“Bare” according to their spectral behavior, explaining the medium
User's Accuracy (UA) of them. Further, in the cases where the applied
contextual criteria concerned these two classes, their omission errors
might have been transferred in classes “Wet grassland” or “Marsh sea-
sonally flooded” respectively. However, worthy to note is that in many
cases, these omission errors highlighted a rather common situation, that
of the seasonal expansion of crops against wetland extent. With regard
to nature conservation and restoration needs, although these areas do
not have dominant wetland characteristics, they are considered as de-
graded wetland ecosystems and it is suggested that they are included in
the total wetland extent calculation.

Moreover, the high accuracies of classes that were defined based on
spectral and contextual features (i.e. “Coastal salt marshes permanently
flooded”) demonstrate the effectiveness of the combined classification
approach. However, the success of UA of certain categories defined by
contextual criteria (i.e. “Riparian broadleaved forest”) with their con-
current medium PA, underlines the subjectivity presented when con-
textual features are employed (Li et al., 2014). Such results can become
useful for updating the distance rule. It should be mentioned that in the
case of “Riparian coniferous forest”, the area covered was very small
leading to low accuracy results.

3.3. Wetland spatial extent within catchments and within the Greek Ramsar
sites

For the recent years (2016-2017), within the catchment areas of the
10 Greek Ramsar sites (1,858,666 ha), the total wetland spatial extent
reached 178,912 ha. Its highest proportion (68%) was included within
the boundaries of the designated Ramsar sites representing the 73% of
the designated area, whereas the remaining area was mainly dominated
by croplands. A remarkable spatial extent of inland wetland ecosystems
(natural lakes, wet grasslands, freshwater marshes, riverine and fen
scrubs) was found outside Ramsar sites. These areas are hydro-ecolo-
gically connected with the designated part of wetland ecosystems and

Sample area (ha)

Number of thematic classes Number of point-samples

Pilot area

National Park of Eastern Macedonia and Thrace (2 Ramsar sites) 95,678
Axios, Loudias, Aliakmonas Delta 512,590
Prespa Lakes 136,485
Evros Delta 21,216

20 340
29 482
11 330
17 380
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4 - 3.1.1 Riparian and fluvial broadleaved forest
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- 4.3 Wet grasslands
- 5.1.1.4 Riverine and fen scrubs
5.2 Sclerophyllous vegetation
6.2 Bare soil, rock, perennial snow & ice
6.2.1.1 Beaches
6.2.1.2 Dunes
6.2.1.3 River banks
7.1.1.1Inland freshwater marshes without reeds
l;i 7.1.1.2 Inland fresh marshes with reeds
8.1.1 Coastal salt marshes without reeds
- i 8.1.2 Coastal salt marshes with reeds
" - 8.2.1 Coastal lagoons
: 8.2.2 River estuaries and estuarine waters of deltas
- 9.1.1.1 Permanent Interconnected running water courses
- 9.2.1.1 Natural permanent water bodies
9.2.2.1 Ponds and lakes with completely man-made structure

9.2.2.4 Other reservoirs

Fig. 3. Examples of classification results. The first two columns indicate the Sentinel 2A-MSI images for dry and wet season respectively; the classification result is
based on modified MAES typology. The first row of pictures demonstrates the particular wetland region of Evros delta, with the “Coastal salt marsh permanently
flooded without reeds” and “Coastal lagoons” being the dominant classes. The second row shows the classification of the “Coastal salt marsh with reeds” in the
Amvrakikos Gulf and the characteristic spectral differentiation that this class presents between seasons. The third row demonstrates the distinctive zone of “Wet
grasslands” next to the “Inland freshwater marsh without reeds” in the Kerkini Lake.

require similar management and conservation measures. Similarly,
coastal wetland ecosystems (coastal lagoons, salt marshes, river estu-
aries and estuarine waters of deltas, beaches and coastal dunes, and
intertidal flats) were located outside Ramsar sites and could be con-
sidered for inclusion in future extension of Ramsar boundaries. The
rarest water-related type was that of coastal dunes scrub identified only
in Axios, Loudias, and Aliakmon Delta. A significant area of the spatial
extent of man-made water bodies was found within designated
boundaries, and in particular, in the Kerkini Reservoir Ramsar site. For
the past years (1986-1987), the total wetland extent was slightly larger,
mainly due to higher wetland extent outside the designated Ramsar
sites. On the contrary, within Ramsar sites, there was a recent increase
in wetland extent was observed, indicating the effectiveness of con-
servation measures. Relevant figures with spatial extent statistics are
provided in the supplementary material.

The image classification results can be further processed in order to
extract new datasets meaningful in management and conservation.
Very relevant is the assessment of land degradation as a major element
related to the loss of biodiversity and ecosystem services. Pattern
landscape analysis can be applied to identify human-natural interface
zones (Riiters et al., 2010). Fig. 4 illustrates such an approach for a sub-
area of the “Eastern Macedonia and Thrace National Park” pilot.
Priority areas for conservation and restoration are revealed i.e. wetland
ecosystems of branches of rivers (Fig. 4b) which in the land degradation
pattern (Fig. 4c) disappear from natural or mostly natural domination.

3.4. Changes in the wetland spatial extent

Computing changes in wetland extent, from years 1986-1987 to
years 2016-2017, revealed both gains and losses as a result of human
activities, management practices as well as natural succession pro-
cesses. Total changes in spatial extent, per land cover flow type (LCF
code), for all pilot areas are presented in Table 9.

3.5. Potential contributions to users and reporting obligations

The need to strengthen national capacities in reporting mechanisms
as well as to make data and information accessible is widely recognized
by conventions and initiatives (i.e. Convention on Biological Diversity,
Ramsar Convention, EU MAES Imitative, SDGs). With regard to SDG
6.6.1 indicator, its methodology piloting phase revealed significant
capacity challenges in monitoring and reporting the changes within
water-related ecosystems; it was concluded that the technical and in-
stitutional capacity is often lacking (UN Environment-Water, 2018).
The current study contributed to the above by developing and applying
a satellite based classification flow to quantify the spatial extent of
different types of wetland ecosystems, their changes and causes. Fur-
thermore, the benefits from the current study through the SWOS service
lines are: (i) The image analysis results for the 10 Greek Ramsar sites,
are available through the SWOS/GEOWetland community portal
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Statistical accuracy measures calculated separately for four pilots (PA stands for Producer's Accuracy and UA for User's Accuracy; empty cells indicate the corre-

spondent categories that were not present in the respective pilot).

MAES classes National Park of Eastern Macedonia and Axios, Loudias, Aliakmonas Prespa Lakes Evros Delta
Thrace (2 Ramsar sites) Delta
2016 2016 2017 2017
PA UA PA UA PA UA PA UA
1 Urban 100.00% 100.00% 94.12% 100.00% 100.00% 100.00% 80.00% 100.00%
10.1.1 Marine waters less than six metres deep at 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
low tide
2 Croplands 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
3.1 Broadleaved forest 100.00% 85.71% 90.00% 96.43% 88.31%  90.67%
3.1.1 Riparian and fluvial broadleaved forest 78.57% 100.00% 53.33% 88.89% 100.00% 80.00%  90.91%  100.00%
3.2 Coniferous forest 80.00% 71.43% 100.00% 100.00% 90.00%  100.00%
3.2.1 Riparian and fluvial coniferous forest 0.00% 50.00% 0.00% 0.00%
4.1 Dry grassland 71.43% 72.73% 81.82% 100.00% 87.50%  84.48%
4.3 Wet grasslands 83.33% 90.00% 80.00% 85.71% 100.00% 100.00% 90.00%  75.00%
5.1.1.4 Riverine and fen scrubs 100.00% 88.89% 77.78% 77.78% 75.86% 88.00%
5.2 Sclerophyllous vegetation 60.00% 87.50% 92.86% 81.25% 74.29%  78.79%
6.2 Bare soil, rock, perennial snow & ice 100.00% 100.00% 75.00% 60.00% 100.00% 80.00%  100.00% 77.78%
6.2.1.1 Beaches 100.00% 100.00% 100.00% 90.00% 100.00% 90.00%  100.00% 88.89%
6.2.1.2 Dunes 100.00% 100.00%
6.2.1.3 River banks 100.00% 100.00% 90.00% 100.00% 100.00% 100.00%
7.1.1.1 Inland freshwater marshes without reeds 100.00% 100.00% 100 100.00%
permanently flooded
7.1.1.1 Inland freshwater marshes without reeds 100.00% 100.00% 83.34 55.55%
seasonally flooded
7.1.1.2 Inland fresh marshes with reeds 91.67% 100.00% 84.62%  100.00%
permanently flooded
8.1.1 Coastal salt marshes without reeds 93.94% 100.00% 100.00% 100.00% 90.74%  94.23%
permanently flooded
8.1.1 Coastal salt marshes without reeds 90.90% 90.90% 100.00% 85.71% 97.36%  86.05%
seasonally flooded
8.1.2 Salt marshes with reeds permanently 100.00% 100.00% 88.89%  100.00%
flooded
8.2.1 Coastal lagoons 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
8.2.2 River estuaries and estuarine waters of 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
deltas
8.4.1 Intertidal flats 100.00% 100.00% 90.00%  100.00%
9.1.1.1 Permanent Interconnected running water 100.00% 100.00% 100.00% 100.00% 90.91%  100.00%
courses
9.2.1.1 Natural permanent water bodies 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
9.2.2.4 Other reservoirs 100.00% 100.00% 100.00% 100.00%
Overall Accuracy (OA) 95.48% 95.44% 91.52% 94.21%
Kappa index of Agreement (KIA) 0.9470 0.9423 0.9017 0.9354

(https://www.swos-service.eu/swos-portal); (ii) SWOS training semi-
nars have been offered to representatives from the Greek Ministry of
Environment and from Management bodies of the Ramsar sites, to
update the Ramsar Information Sheets, to continue monitoring the SDG

6.6.1 indicator, and to make use of the study results in assessments
relevant to EU priorities. (iii) Wetland class discrimination findings can
support further developments of the freely-available SWOS software
(https://www.swos-service.eu/documents_mapping-software/).

‘ Land degradation based
. on nature domination

- All natural

- Mostly natural
Natural-agricultural

- Natural-developed
Natural-agricultural-developed

Not dominated by natural

(b)

(c)

Fig. 4. Land degradation assessment. (a) image classification results; (b) reclassification in natural (green), developed-urban (magenta) and agricultural areas (blue);
(c) land degradation units portraying landscape patterns of agricultural, developed and natural areas domination, performed using the GuidosToolbox (v. 2.6)
software (Vogt and Riitters, 2017). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 9

Total spatial extent changes per land cover flow type (LCF code) for the 30-year
time period from 1986 to 1987 to 2016-2017 (see the supplementary material
for full LCF description).

LCF Code LCF description Area(ha)
LCF10002003 Urban sprawl 14,044
LCF221 Urban diffuse residential sprawl against wetlands 52
LCF5 Conversion from forested and natural land to agriculture 22,264
LCF52 Conversion from semi-natural land to agriculture 14
LCF521 Intensive conversion from semi-natural land to 65
agriculture
LCF53 Conversion from wetlands and waters to agriculture 2241
LCF54 Conversion from developed areas to agriculture 528
LCF61 Withdrawal of farming with woodland creation 1805
LCF62 Withdrawal of farming without significant woodland 3790
creation
LCF10063009 Withdrawal of farming in favor of wetlands and waters, 1745
natural changes
LCF63 Farmland abandonment in favor of wetlands and waters 1659
LCF72 Forest creation, afforestation 57,410
LCF721 Forest creation, afforestation on all previously wetlands 846
and waters
LCF73 Forests internal conversions 3910
LCF74 Recent felling and transition 21,336
LCF10081009 Water bodies creation AND/OR natural changes 12
LCF81 Water bodies creation (dams and reservoirs) 2018
LCF9 Changes due to natural and multiple causes 7291
LCF91 Semi-natural creation and rotation 5170
LCF911 Semi-natural creation: Natural colonization of land used 325
by human activities
LCF912 Semi-natural rotation 65,132
LCF9121 Wetland and waters rotation 40,753
LCF9122 Wetland creation in dry semi-natural and natural land 3650
LCF9123 Wetland uptake from dry semi-natural and natural land 3255
LCF913 Extension of water courses 1502
LCF93 Coastal erosion 5765
LCF99 Other changes and unknown 2390

4. Conclusions

The current study, undertaken in the context of SWOS, was carried
out for all 10 Greek Ramsar sites and their catchment areas (almost
17% of the inland Greek territory). It succeeded to generate a national
application for mapping and assessing wetland ecosystems' spatial ex-
tent within and out of the Ramsar site boundaries (121,307 ha and
57,595 ha respectively). The MAES nomenclature, as enhanced within
SWOS, proved applicable to reflect the complex spatial structure and
composition of Mediterranean wetlands. Following a hierarchical ob-
ject based approach, 42 Sentinel 2A-MSI images (2016-2017) and 34
Landsat 5TM images (1986-1987), covering two seasons (wet and dry),
were processed. Several RS techniques were applied as well as expert —
knowledge rules, ending up in the discrimination of 31 MAES classes, of
which 24 corresponded to wetland ecosystems. Classification ruleset
adjustments were proven necessary in order to achieve high accuracies.
These, along with the generated classification flow, form potential
guidance for wetland ecosystem mapping. As next steps, the enhance-
ment of the classification model could be investigated by incorporating
multi-seasonal satellite data to reveal additional phenological differ-
ences between wetland classes (i.e. marsh seasonally flooded and wet
grasslands in winter) and by introducing ancillary data (topographical
data).

The mapping of all ecosystem types at the entire catchments, en-
abled us to capture the changes in wetland extent along with their
causes (i.e. conversion to agriculture). These results provide a knowl-
edge basis for national and regional authorities of the Ramsar sites,
National Parks and water districts, to identify areas for conservation
and restoration and to direct sustainable management of water, natural,
and agricultural resources within a hydro-ecological perspective.

The SWOS service lines provide a comprehensive user-oriented
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solution to improve knowledge and capacities for wetland ecosystems
assessments. These, along with the shift to open-access policy in pro-
vision and employment of standard current and archive satellite data,
allow the consideration for future transferability of the current national
SWOS service case, in support of the SDG 6.6.1 indicator monitoring,
the update of the Ramsar Information Sheets, and the implementation
of the EU MAES Initiative.
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